运行数据显示全光纤电流互感器(fiber optic current transformer,FOCT)在极端环境下(温度为–45~85℃、振动加速度>15 m/s^(2))故障概率明显偏高,因此研究极端环境对FOCT性能的影响十分必要。在分析FOCT工作原理基础上,重点讨论了F...运行数据显示全光纤电流互感器(fiber optic current transformer,FOCT)在极端环境下(温度为–45~85℃、振动加速度>15 m/s^(2))故障概率明显偏高,因此研究极端环境对FOCT性能的影响十分必要。在分析FOCT工作原理基础上,重点讨论了FOCT核心模块的结构特征及极端环境的影响,并建立FOCT传变模型。根据FOCT真实工作环境,分析了极端环境对其测量准确性的影响。结果表明:温度的升高、光纤长度的增加、振动加速度的变大,都会使FOCT比差增大,测量精度下降。特别是在极端环境下,测量误差较大,无法满足0.2S级测量准确度的要求。为验证模型的可靠性,开展了温度和振动影响试验。针对现有试验缺乏对极端环境的考核,提出增加测点的温度试验方法和增加振动响应试验及振动耐久试验的振动试验方法。试验结果与仿真结果对比表明:两者结果具有一致性,偏差电流波形变化趋势比较一致。该研究为FOCT可靠性问题提供有益参考。展开更多
全光纤电流互感器(all-fiber optic current transformer,AFOCT)作为换流站内重要的测量设备,是保证直流系统安全稳定运行的基础。以某±800 kV换流站交流滤波器不平衡AFOCT测量数据异常导致断路器跳闸事件为例,首先,详细阐述了AFOC...全光纤电流互感器(all-fiber optic current transformer,AFOCT)作为换流站内重要的测量设备,是保证直流系统安全稳定运行的基础。以某±800 kV换流站交流滤波器不平衡AFOCT测量数据异常导致断路器跳闸事件为例,首先,详细阐述了AFOCT的基本工作原理,并推导得出其测量原理;其次,通过保护动作正确性分析、现场故障排查、现场验证、保偏光缆振动影响试验等方法深度研究分析,最终得出引起测量数据异常的根本原因,以及保偏光缆受振动影响的故障机理;最后,针对保偏光缆易受振动干扰导致测量数据异常问题,提出了具体的改进措施和工程建议,为后期换流站AFOCT的工程设计、现场施工验收、可靠性提升提供理论支撑。展开更多
该文针对全光纤电流互感器测量精度受各种内外部因素影响的问题,建立全光纤电流互感器微元传感单元的分布参数模型,从本质上解释传感单元中线性双折射的产生机理,即极化率张量对角元不相等的作用结果;并结合光电转化的数学模型得到全光...该文针对全光纤电流互感器测量精度受各种内外部因素影响的问题,建立全光纤电流互感器微元传感单元的分布参数模型,从本质上解释传感单元中线性双折射的产生机理,即极化率张量对角元不相等的作用结果;并结合光电转化的数学模型得到全光纤电流互感器的开环机理,提出提高全光纤电流互感器(fiber-optical current transformer,FOCT)测量精度的方法:采用新型传感材料或新型传感头结构及引入反馈信号构建闭环结构。采用COMSOL有限元数值分析方法,实现光场和磁场的耦合。分析双折射、被测电流、纤芯折射率、光纤的弯曲半径对测量结果的影响。研究表明,线性双折射是由传感材料的折射率变化引起,会降低测量灵敏度;同一双折射,在不同的外界条件(如被测电流)下,对测量结果的影响不同;对于不同的纤芯折射率,折射率越小,传输相同距离后,旋转角越大;微元传感单元中由弯曲半径引起的线性双折射较小,通常可采用分段补偿法,得到理想的Faraday旋转角;最后通过仿真分析与现有经典公式的比较,验证分布参数模型的有效性,为后续FOCT传感单元中的光场、磁场、温度场、应力场等复杂的多物理场耦合提供模型基础。展开更多
建立了全光纤电流互感器(fiber-optical current transformer,FOCT)温度特性的数学模型。该模型充分考虑传感光纤的弯曲特性,结合光纤线性双折射的分布参数模型从本质上解释了温度对线性双折射的影响机理:由于传感环的弯曲性,温度变...建立了全光纤电流互感器(fiber-optical current transformer,FOCT)温度特性的数学模型。该模型充分考虑传感光纤的弯曲特性,结合光纤线性双折射的分布参数模型从本质上解释了温度对线性双折射的影响机理:由于传感环的弯曲性,温度变化会导致光纤横截面上的受力不对称,进而引起线性双折射;单位长度光纤的线性双折射相位差与温度变化量成正比,与光纤弯曲半径成反比。并结合光纤Verdet常数的温度特性综合量化了温度对FOCT的影响。采用COMSOL有限元分析方法实现光场、磁场、温度场、应力场的耦合并分析求解。仿真结果表明:双折射效应会使光波旋转角变小;光纤横截面上的应力差与温度变化量成正比,与光纤弯曲半径成反比;温度波动将引起线性双折射,进而使光波旋转角减小;结合Verdet常数得到了温度波动时FOCT的综合误差,与理论分析结果吻合。最后设计并搭建FOCT实验平台,进行线性度测试和温度循环测试。测试结果表明:实验误差与理论误差变化趋势基本一致;温度波动越大,FOCT误差漂移越严重,必须采取补偿措施,故提出一系列改善FOCT温度稳定性的方法。仿真与实验结果验证了理论分析的正确性。展开更多
文摘运行数据显示全光纤电流互感器(fiber optic current transformer,FOCT)在极端环境下(温度为–45~85℃、振动加速度>15 m/s^(2))故障概率明显偏高,因此研究极端环境对FOCT性能的影响十分必要。在分析FOCT工作原理基础上,重点讨论了FOCT核心模块的结构特征及极端环境的影响,并建立FOCT传变模型。根据FOCT真实工作环境,分析了极端环境对其测量准确性的影响。结果表明:温度的升高、光纤长度的增加、振动加速度的变大,都会使FOCT比差增大,测量精度下降。特别是在极端环境下,测量误差较大,无法满足0.2S级测量准确度的要求。为验证模型的可靠性,开展了温度和振动影响试验。针对现有试验缺乏对极端环境的考核,提出增加测点的温度试验方法和增加振动响应试验及振动耐久试验的振动试验方法。试验结果与仿真结果对比表明:两者结果具有一致性,偏差电流波形变化趋势比较一致。该研究为FOCT可靠性问题提供有益参考。
文摘全光纤电流互感器(all-fiber optic current transformer,AFOCT)作为换流站内重要的测量设备,是保证直流系统安全稳定运行的基础。以某±800 kV换流站交流滤波器不平衡AFOCT测量数据异常导致断路器跳闸事件为例,首先,详细阐述了AFOCT的基本工作原理,并推导得出其测量原理;其次,通过保护动作正确性分析、现场故障排查、现场验证、保偏光缆振动影响试验等方法深度研究分析,最终得出引起测量数据异常的根本原因,以及保偏光缆受振动影响的故障机理;最后,针对保偏光缆易受振动干扰导致测量数据异常问题,提出了具体的改进措施和工程建议,为后期换流站AFOCT的工程设计、现场施工验收、可靠性提升提供理论支撑。
文摘该文针对全光纤电流互感器测量精度受各种内外部因素影响的问题,建立全光纤电流互感器微元传感单元的分布参数模型,从本质上解释传感单元中线性双折射的产生机理,即极化率张量对角元不相等的作用结果;并结合光电转化的数学模型得到全光纤电流互感器的开环机理,提出提高全光纤电流互感器(fiber-optical current transformer,FOCT)测量精度的方法:采用新型传感材料或新型传感头结构及引入反馈信号构建闭环结构。采用COMSOL有限元数值分析方法,实现光场和磁场的耦合。分析双折射、被测电流、纤芯折射率、光纤的弯曲半径对测量结果的影响。研究表明,线性双折射是由传感材料的折射率变化引起,会降低测量灵敏度;同一双折射,在不同的外界条件(如被测电流)下,对测量结果的影响不同;对于不同的纤芯折射率,折射率越小,传输相同距离后,旋转角越大;微元传感单元中由弯曲半径引起的线性双折射较小,通常可采用分段补偿法,得到理想的Faraday旋转角;最后通过仿真分析与现有经典公式的比较,验证分布参数模型的有效性,为后续FOCT传感单元中的光场、磁场、温度场、应力场等复杂的多物理场耦合提供模型基础。
文摘建立了全光纤电流互感器(fiber-optical current transformer,FOCT)温度特性的数学模型。该模型充分考虑传感光纤的弯曲特性,结合光纤线性双折射的分布参数模型从本质上解释了温度对线性双折射的影响机理:由于传感环的弯曲性,温度变化会导致光纤横截面上的受力不对称,进而引起线性双折射;单位长度光纤的线性双折射相位差与温度变化量成正比,与光纤弯曲半径成反比。并结合光纤Verdet常数的温度特性综合量化了温度对FOCT的影响。采用COMSOL有限元分析方法实现光场、磁场、温度场、应力场的耦合并分析求解。仿真结果表明:双折射效应会使光波旋转角变小;光纤横截面上的应力差与温度变化量成正比,与光纤弯曲半径成反比;温度波动将引起线性双折射,进而使光波旋转角减小;结合Verdet常数得到了温度波动时FOCT的综合误差,与理论分析结果吻合。最后设计并搭建FOCT实验平台,进行线性度测试和温度循环测试。测试结果表明:实验误差与理论误差变化趋势基本一致;温度波动越大,FOCT误差漂移越严重,必须采取补偿措施,故提出一系列改善FOCT温度稳定性的方法。仿真与实验结果验证了理论分析的正确性。