新能源存储与转换技术的开发与利用是全球关注的热点问题,也是实现“双碳”目标的重要途径。锂离子电池具有高工作电压、高能量密度、环保等优点,是减少碳排放的有效途径。与凝胶聚合物电解质相比,锂单离子全固态聚合物电解质(single li...新能源存储与转换技术的开发与利用是全球关注的热点问题,也是实现“双碳”目标的重要途径。锂离子电池具有高工作电压、高能量密度、环保等优点,是减少碳排放的有效途径。与凝胶聚合物电解质相比,锂单离子全固态聚合物电解质(single lithium-ion conducting all-solid-state polymer electrolytes,SLIC ASPEs)在安全性、稳定性、电池效率等方面具有明显优势。为了探索新型SLIC ASPEs合成的新途径,以甲基丙烯酰氯、对溴苯酚和2(2碘四氟乙氧基)四氟乙基磺酰氟为初始原料,通过亲核取代反应和乌尔曼反应,合成了一种含全氟磺酸锂的新型甲基丙烯酯单体(MA PSF Li),通过自由基共聚合反应得到新型交联型SLIC ASPEs(PMAPEO co PMA PSF Li x,x为单体MA PSF Li与p BP MA的投料量比),利用核磁共振光谱表征了单体的结构,考察了PMAPEO co PMA PSF Li x膜的热稳定性、微相结构、离子传导率和机械强度等性能。结果表明:PMAPEO co PMA PSF Li 30膜的热分解温度为220℃,离子电导率达到29.5 mS/cm,抗拉强度为43 MPa。展开更多
For All-Solid-State battery applications, Mg2+-ion conducting polymer electrolytes and Mg-metal electrode are currently considered as alternate choices in place of Li+-ion conducting polymer electrolytes/Li-metal el...For All-Solid-State battery applications, Mg2+-ion conducting polymer electrolytes and Mg-metal electrode are currently considered as alternate choices in place of Li+-ion conducting polymer electrolytes/Li-metal electrode. Present paper reports fabrication of All-Solid-State battery based on the following Mg2+-ion conducting nano composite polymer electrolyte (NCPE) films: [85PEO: 15Mg(C104)2] + 5% TiO2 (〈 100 nm), [85PEO: 15Mg(CIO4)2] + 3% SiO2(-8 nm). [85PEO: 15Mg(CIO4)2] + 3% MgO (〈 100 nm), [85PEO:15Mg(C1O4)2] + 3% MgO (-44 μm). NCPE films were prepared by hot-press technique. Solid Polymer Electrolyte (SPE) composition: [85PEO: 15Mg(CIO4)2], identified as high conducting film at room temperature, has been used as ISt--phase host and nano/micro particles of active (MgO)/passive (SiO2, TiO2) fillers as IInd-phase dispersoid. Filler particle dependent conductivity studies identified above mentioned NCPE films as optimum conducting composition (OCC) at room temperature. Ion transport behavior of SPE/NCPE film materials was investigated previously. Present paper reports materials characterization and cell performance studies on All-Solid-State batteries: Mg (Anode) Ⅱ SPE or NCPE films tt C+MnO2+Electrolyte (Cathode). Open circuit voltage (OCV) obtained was in the range: 1.79-1.92 V. The batteries were discharged at room temperature under different load conditions and some important battery parameters have been evaluated from plateau region of cell-potential discharge profiles. All the batteries performed quite satisfactorily specially under low current drain states.展开更多
As one of the most promising next-generation energy storage devices,the lithium-metal battery has been extensively investigated.However,safety issues and undesired lithium dendrite growth hinder its development.The ap...As one of the most promising next-generation energy storage devices,the lithium-metal battery has been extensively investigated.However,safety issues and undesired lithium dendrite growth hinder its development.The application of solid-state electrolytes has attracted increasing attention as they can solve safety issues and show great potential to inhibit the growth of lithium dendrites.Polyethylene oxide(PEO)-based electrolytes are very promising due to their enhanced safety and excellent flexibility.However,they suffer from low ionic conductivity at room temperature and cannot effectively inhibit lithium dendrites at high temperatures due to the intrinsic semicrystalline properties and poor mechanical strength.In this work,a novel coral-like Li_(6.25)Al_(0.25)La_(3)Zr_(2)O_(12)(C-LALZO)is synthesized to serve as an active ceramic filler in PEO.The PEO with LALZO coral(PLC)exhibits increased ionic conductivity and mechanical strength,which leads to uniform deposition/stripping of lithium metal.The Li symmetric cells with PLC do not cause a short circuit after cycling for 1500 h at 60℃.The assembled LiFePO_(4)/PLC/Li batteries display excellent cycling stability at both 60 and 50℃.This work reveals that the electrochemical properties of the composite electrolyte can be effectively improved by tuning the microstructure of the filler,such as the C-LALZO architecture.展开更多
文摘新能源存储与转换技术的开发与利用是全球关注的热点问题,也是实现“双碳”目标的重要途径。锂离子电池具有高工作电压、高能量密度、环保等优点,是减少碳排放的有效途径。与凝胶聚合物电解质相比,锂单离子全固态聚合物电解质(single lithium-ion conducting all-solid-state polymer electrolytes,SLIC ASPEs)在安全性、稳定性、电池效率等方面具有明显优势。为了探索新型SLIC ASPEs合成的新途径,以甲基丙烯酰氯、对溴苯酚和2(2碘四氟乙氧基)四氟乙基磺酰氟为初始原料,通过亲核取代反应和乌尔曼反应,合成了一种含全氟磺酸锂的新型甲基丙烯酯单体(MA PSF Li),通过自由基共聚合反应得到新型交联型SLIC ASPEs(PMAPEO co PMA PSF Li x,x为单体MA PSF Li与p BP MA的投料量比),利用核磁共振光谱表征了单体的结构,考察了PMAPEO co PMA PSF Li x膜的热稳定性、微相结构、离子传导率和机械强度等性能。结果表明:PMAPEO co PMA PSF Li 30膜的热分解温度为220℃,离子电导率达到29.5 mS/cm,抗拉强度为43 MPa。
文摘For All-Solid-State battery applications, Mg2+-ion conducting polymer electrolytes and Mg-metal electrode are currently considered as alternate choices in place of Li+-ion conducting polymer electrolytes/Li-metal electrode. Present paper reports fabrication of All-Solid-State battery based on the following Mg2+-ion conducting nano composite polymer electrolyte (NCPE) films: [85PEO: 15Mg(C104)2] + 5% TiO2 (〈 100 nm), [85PEO: 15Mg(CIO4)2] + 3% SiO2(-8 nm). [85PEO: 15Mg(CIO4)2] + 3% MgO (〈 100 nm), [85PEO:15Mg(C1O4)2] + 3% MgO (-44 μm). NCPE films were prepared by hot-press technique. Solid Polymer Electrolyte (SPE) composition: [85PEO: 15Mg(CIO4)2], identified as high conducting film at room temperature, has been used as ISt--phase host and nano/micro particles of active (MgO)/passive (SiO2, TiO2) fillers as IInd-phase dispersoid. Filler particle dependent conductivity studies identified above mentioned NCPE films as optimum conducting composition (OCC) at room temperature. Ion transport behavior of SPE/NCPE film materials was investigated previously. Present paper reports materials characterization and cell performance studies on All-Solid-State batteries: Mg (Anode) Ⅱ SPE or NCPE films tt C+MnO2+Electrolyte (Cathode). Open circuit voltage (OCV) obtained was in the range: 1.79-1.92 V. The batteries were discharged at room temperature under different load conditions and some important battery parameters have been evaluated from plateau region of cell-potential discharge profiles. All the batteries performed quite satisfactorily specially under low current drain states.
基金supported by the School Research Startup Expenses of Harbin Institute of Technology(Shenzhen)(DD29100027)the National Natural Science Foundation of China(52002094)+2 种基金China Postdoctoral Science Foundation(2019M661276)Guangdong Basic and AppliedBasic Research Foundation(2019A1515110756)the High-level Talents Discipline Construction Fund of Shandong University(31370089963078)。
文摘As one of the most promising next-generation energy storage devices,the lithium-metal battery has been extensively investigated.However,safety issues and undesired lithium dendrite growth hinder its development.The application of solid-state electrolytes has attracted increasing attention as they can solve safety issues and show great potential to inhibit the growth of lithium dendrites.Polyethylene oxide(PEO)-based electrolytes are very promising due to their enhanced safety and excellent flexibility.However,they suffer from low ionic conductivity at room temperature and cannot effectively inhibit lithium dendrites at high temperatures due to the intrinsic semicrystalline properties and poor mechanical strength.In this work,a novel coral-like Li_(6.25)Al_(0.25)La_(3)Zr_(2)O_(12)(C-LALZO)is synthesized to serve as an active ceramic filler in PEO.The PEO with LALZO coral(PLC)exhibits increased ionic conductivity and mechanical strength,which leads to uniform deposition/stripping of lithium metal.The Li symmetric cells with PLC do not cause a short circuit after cycling for 1500 h at 60℃.The assembled LiFePO_(4)/PLC/Li batteries display excellent cycling stability at both 60 and 50℃.This work reveals that the electrochemical properties of the composite electrolyte can be effectively improved by tuning the microstructure of the filler,such as the C-LALZO architecture.