期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于数据-物理模型融合驱动的原始-对偶自监督学习最优潮流求解方法
1
作者 翁宗龙 李滨 +2 位作者 肖佳文 张佳乐 白晓清 《电力自动化设备》 2025年第4期202-208,共7页
随着新型电力系统的构建以及清洁低碳能源体系的转变,高维强非线性、高不确定性、强耦合等特点使得现有最优潮流计算的复杂度急剧增加。基于数据-物理模型融合驱动,提出一种内嵌交流潮流方程的原始-对偶自监督学习的最优潮流求解方法。... 随着新型电力系统的构建以及清洁低碳能源体系的转变,高维强非线性、高不确定性、强耦合等特点使得现有最优潮流计算的复杂度急剧增加。基于数据-物理模型融合驱动,提出一种内嵌交流潮流方程的原始-对偶自监督学习的最优潮流求解方法。建立原始神经网络和对偶神经网络,并采用类增广拉格朗日的方法进行联合训练。原始神经网络仅预测所有节点的电压,在该训练网络中内嵌交流潮流方程,以计算发电机的有功和无功出力;对偶神经网络预测拉格朗日乘子估计值。仿真结果表明,所提方法不仅关注大量数据的底层特征,还优化解的质量,有助于更好地探索数据的结构和特性。同时,该方法无须预处理标签样本数据集,其计算精度和可信度优于数据驱动方法,其计算速度比传统物理模型驱动方法快数十倍。 展开更多
关键词 数据-物理融合驱动 类增广拉格朗日 原始-对偶自监督学习 最优潮流 内嵌交流潮流方程
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部