针对传统组合预测模型大多是通过建立单一准则方程进行优化,而没有更好地考虑各单一模型之间互支持信息带来的不确定性问题,建立基于多准则的组合预测模型权重确定算法。首先,通过建立区间数模型构建样本区间距离并进行相关折算归一化...针对传统组合预测模型大多是通过建立单一准则方程进行优化,而没有更好地考虑各单一模型之间互支持信息带来的不确定性问题,建立基于多准则的组合预测模型权重确定算法。首先,通过建立区间数模型构建样本区间距离并进行相关折算归一化生成样本的基本概率分布BPA(basic probability assignment),作为单一预测模型的初级权重;然后,通过对D-S证据理论进行改进,建立证据可信度、证据精度和证据自冲突系数3个准则分别用于评价单一模型自身精度及其之间互相支持信息,通过对3个准则排序得到综合排序值作为单一模型初级权重的权重调整系数;最后,综合多时刻数据归一化后确定单一模型的最终权重用于组合预测。研究结果表明:经过权重调整后的组合预测精度得到显著提高,且经过调整系数R调整后的不变权组合预测模型最优。展开更多
拥堵状态辨识是道路运行状态评估的重要内容,是交通系统流量调控和管理的重要参考指标.在智能交通系统(Intelligent transport system,ITS)普及化程度越来越高的后交通时代,如何实现海量数据下对多源不确定交通拥堵状态的辨识是非常重...拥堵状态辨识是道路运行状态评估的重要内容,是交通系统流量调控和管理的重要参考指标.在智能交通系统(Intelligent transport system,ITS)普及化程度越来越高的后交通时代,如何实现海量数据下对多源不确定交通拥堵状态的辨识是非常重要的内容.首先,基于多元集对分析建立一种新的路网交通拥堵状态刻画模型;然后,通过改进证据理论中Dempster组合规则实现交通信息融合,并推导出当前交通拥堵状态的准确表达值;最后,在数值模拟的基础上,使用重庆市南岸区的交通检测数据进行仿真分析,结果表明本方法能准确直观地反映出实时交通拥堵状态,具有潜在的实际应用价值.展开更多
文摘针对传统组合预测模型大多是通过建立单一准则方程进行优化,而没有更好地考虑各单一模型之间互支持信息带来的不确定性问题,建立基于多准则的组合预测模型权重确定算法。首先,通过建立区间数模型构建样本区间距离并进行相关折算归一化生成样本的基本概率分布BPA(basic probability assignment),作为单一预测模型的初级权重;然后,通过对D-S证据理论进行改进,建立证据可信度、证据精度和证据自冲突系数3个准则分别用于评价单一模型自身精度及其之间互相支持信息,通过对3个准则排序得到综合排序值作为单一模型初级权重的权重调整系数;最后,综合多时刻数据归一化后确定单一模型的最终权重用于组合预测。研究结果表明:经过权重调整后的组合预测精度得到显著提高,且经过调整系数R调整后的不变权组合预测模型最优。
文摘拥堵状态辨识是道路运行状态评估的重要内容,是交通系统流量调控和管理的重要参考指标.在智能交通系统(Intelligent transport system,ITS)普及化程度越来越高的后交通时代,如何实现海量数据下对多源不确定交通拥堵状态的辨识是非常重要的内容.首先,基于多元集对分析建立一种新的路网交通拥堵状态刻画模型;然后,通过改进证据理论中Dempster组合规则实现交通信息融合,并推导出当前交通拥堵状态的准确表达值;最后,在数值模拟的基础上,使用重庆市南岸区的交通检测数据进行仿真分析,结果表明本方法能准确直观地反映出实时交通拥堵状态,具有潜在的实际应用价值.