An integrated macro and micro multi-scale model for the three-dimensional microstructure simulation of Ni-based superalloy investment castings was developed, and applied to industrial castings to investigate grain evo...An integrated macro and micro multi-scale model for the three-dimensional microstructure simulation of Ni-based superalloy investment castings was developed, and applied to industrial castings to investigate grain evolution during solidification. A ray tracing method was used to deal with the complex heat radiation transfer. The rnicrostructure evolution was simulated based on the Modified Cellular Automaton method, which was coupled with three-dimensional nested macro and micro grids. Experi- ments for Ni-based superalloy turbine wheel investment casting were carried out, which showed a good correspondence with the simulated results. It is indicated that the proposed model is able to predict the microstructure of the casting precisely, which provides a tool for the optimizing process.展开更多
Directional solidified(DS) turbine blades are widely used in advanced gas turbine engine. The size and orientation of columnar grains have great influence on the high temperature property and performance of the turbin...Directional solidified(DS) turbine blades are widely used in advanced gas turbine engine. The size and orientation of columnar grains have great influence on the high temperature property and performance of the turbine blade. Numerical simulation of the directional solidification process is an effective way to investigate the grain's growth and morphology,and hence to optimize the process. In this paper,a mathematical model was presented to study the directional solidified microstructures at different withdrawal rates. Ray-tracing method was applied to calculate the temperature variation of the blade. By using a Modified Cellular Automation(MCA) method and a simple linear interpolation method,the mushy zone and the microstructure evolution were studied in detail. Experimental validations were carried out at different withdrawal rates. The calculated cooling curves and microstructure agreed well with those experimental. It is indicated that the withdrawal rate affects the temperature distribution and growth rate of the grain directly,which determines the final size and morphology of the columnar grain. A moderate withdrawal rate can lead to high quality DS turbine blades for industrial application.展开更多
In order to understand the influence of supergravity on the microstructure of materials,crystal nucleation,dendritic growth,and polycrystal solidification under supergravity are investigated by using the modified nucl...In order to understand the influence of supergravity on the microstructure of materials,crystal nucleation,dendritic growth,and polycrystal solidification under supergravity are investigated by using the modified nucleation theory and phase field models.Firstly,supergravity is considered in the nucleation theory by using pressure-dependent Gibbs free energy.It is found that the critical radius decreases and the nucleation rate increases when supergravity rises.Secondly,anisotropic heat transport is proposed in the phase field model to investigate the influence of supergravity on dendritic growth.Phase field simulations show that supergravity promotes the secondary dendritic growth in the direction parallel to supergravity.Finally,a multiply phase field model with pressure-dependent interfacial energy is employed to simulate the polycrystalline solidification under supergravity.Due to the depth-dependent pressure by supergravity,crystal grains are significantly refined by high pressure.In addition,gradient distribution of grain size is obtained in the solidification morphology of polycrystalline,which is consistent with previous experimental observations.Results of this work suggest that supergravity can be used to tune the microstructures and properties of materials.展开更多
基金financially supported by the National Basic Research Program of China (Grant Nos. 2005CB724105 and 2011CB706801)the National Natural Science Foundation of China (Grant No. 10477010)+1 种基金the National High Technology Research, Development Program of China (Grant No. 2007AA04Z141)the Important National Science & Technology Specific Projects (Grant No. 2009ZX04006-041-04)
文摘An integrated macro and micro multi-scale model for the three-dimensional microstructure simulation of Ni-based superalloy investment castings was developed, and applied to industrial castings to investigate grain evolution during solidification. A ray tracing method was used to deal with the complex heat radiation transfer. The rnicrostructure evolution was simulated based on the Modified Cellular Automaton method, which was coupled with three-dimensional nested macro and micro grids. Experi- ments for Ni-based superalloy turbine wheel investment casting were carried out, which showed a good correspondence with the simulated results. It is indicated that the proposed model is able to predict the microstructure of the casting precisely, which provides a tool for the optimizing process.
基金supported by the National Basic Research Program of China (Grant Nos. 2005CB724105, 2011CB706801)National Natural Science Foundation of China (Grant No. 10477010)+1 种基金National High Technology Research and Development Program of China (Grant No. 2007AA04Z141)Important National Science & Technology Specific Projects (Grant Nos. 2009ZX04006-041, 2011ZX04014-052)
文摘Directional solidified(DS) turbine blades are widely used in advanced gas turbine engine. The size and orientation of columnar grains have great influence on the high temperature property and performance of the turbine blade. Numerical simulation of the directional solidification process is an effective way to investigate the grain's growth and morphology,and hence to optimize the process. In this paper,a mathematical model was presented to study the directional solidified microstructures at different withdrawal rates. Ray-tracing method was applied to calculate the temperature variation of the blade. By using a Modified Cellular Automation(MCA) method and a simple linear interpolation method,the mushy zone and the microstructure evolution were studied in detail. Experimental validations were carried out at different withdrawal rates. The calculated cooling curves and microstructure agreed well with those experimental. It is indicated that the withdrawal rate affects the temperature distribution and growth rate of the grain directly,which determines the final size and morphology of the columnar grain. A moderate withdrawal rate can lead to high quality DS turbine blades for industrial application.
基金This work was supported by the Basic Science Center Program for Multiphase Evolution in Hypergravity of the National Natural Science Foundation of China(Grant No.51988101)the National Natural Science Foundation of China(Grant Nos.12192214 and 11972320)the Key Research Project of Zhejiang Laboratory(Grant No.2021PE0AC02).
文摘In order to understand the influence of supergravity on the microstructure of materials,crystal nucleation,dendritic growth,and polycrystal solidification under supergravity are investigated by using the modified nucleation theory and phase field models.Firstly,supergravity is considered in the nucleation theory by using pressure-dependent Gibbs free energy.It is found that the critical radius decreases and the nucleation rate increases when supergravity rises.Secondly,anisotropic heat transport is proposed in the phase field model to investigate the influence of supergravity on dendritic growth.Phase field simulations show that supergravity promotes the secondary dendritic growth in the direction parallel to supergravity.Finally,a multiply phase field model with pressure-dependent interfacial energy is employed to simulate the polycrystalline solidification under supergravity.Due to the depth-dependent pressure by supergravity,crystal grains are significantly refined by high pressure.In addition,gradient distribution of grain size is obtained in the solidification morphology of polycrystalline,which is consistent with previous experimental observations.Results of this work suggest that supergravity can be used to tune the microstructures and properties of materials.