期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
基于分块主成分分析的人体运动合成
1
作者 李妙洋 蓝荣祎 孙怀江 《计算机工程》 CAS CSCD 2013年第9期240-244,共5页
在高维运动数据处理中,传统降维方法过度关注于保护拓扑结构和重构信息,导致低维子空间参数具有不可理解性。针对该问题,提出一种基于分块主成分分析的运动合成方法。对根据人体骨骼结构特点分组的运动数据进行分块主成分分析,获得具有... 在高维运动数据处理中,传统降维方法过度关注于保护拓扑结构和重构信息,导致低维子空间参数具有不可理解性。针对该问题,提出一种基于分块主成分分析的运动合成方法。对根据人体骨骼结构特点分组的运动数据进行分块主成分分析,获得具有特定语义的低维子空间参数。以跳跃运动为例进行实验,结果表明,该方法通过直观地改变具有语义的运动参数,可实时合成满足要求的运动结果。 展开更多
关键词 三维人体动画 运动捕获数据 运动合成 成分分析 分块主成分分析 动态时间弯曲
在线阅读 下载PDF
基于对称性特征分块主成分分析的人脸识别方法
2
作者 高忠 赵景秀 《青岛大学学报(工程技术版)》 CAS 2010年第4期48-51,75,共5页
为了进一步提高人脸识别的精度,考虑在分块主成分分析算法中引入对称性思想。首先对图像进行分块并分别求其奇偶对称脸,然后利用主成分分析算法提取图像的主要鉴别特征。该方法充分考虑了光照等多种因素对识别率的影响,利用人脸图像的... 为了进一步提高人脸识别的精度,考虑在分块主成分分析算法中引入对称性思想。首先对图像进行分块并分别求其奇偶对称脸,然后利用主成分分析算法提取图像的主要鉴别特征。该方法充分考虑了光照等多种因素对识别率的影响,利用人脸图像的对称性增加了样本数量,以有效提高识别率。在ORL人脸库上的实验显示,在每类训练样本数为7、提取特征数为20的情况下,基于对称性特征的分块主成分分析方法的人脸识别率为95%,说明该方法是有效的。 展开更多
关键词 人脸识别 对称性 分块主成分分析
在线阅读 下载PDF
一种基于分块主成分分析的存储器容错方法研究
3
作者 方嘉言 邵翠萍 李慧云 《集成技术》 2018年第6期49-59,共11页
随着集成电路工艺水平提升,半导体器件尺寸越来越小,存储器更易受到周围环境的影响而导致数据存储故障。针对这一问题,该文提出了一种基于分块主成分分析的存储器容错方法。该方法应用分块主成分分析算法提取数据的主要特征,并对求取的... 随着集成电路工艺水平提升,半导体器件尺寸越来越小,存储器更易受到周围环境的影响而导致数据存储故障。针对这一问题,该文提出了一种基于分块主成分分析的存储器容错方法。该方法应用分块主成分分析算法提取数据的主要特征,并对求取的特征数据作均值化处理,得到原始数据的最佳近似估计。该最佳近似估计可对数据中的任意故障做容错替换,使容错替换后的数据和原始数据的误差最小。实验结果表明,该方法可以使图片数据在0.003 5错误率的情况下仍保持峰值信噪比大于30 dB;与传统纠错码相比,执行时间缩短了约40%,内存消耗减少了约12%,获得了较好的容错效果。 展开更多
关键词 容错 成分分析 分块主成分分析
在线阅读 下载PDF
分块二维主成分分析鉴别特征抽取能力研究 被引量:1
4
作者 陈伏兵 韦相和 +1 位作者 严云洋 杨静宇 《计算机工程与应用》 CSCD 北大核心 2006年第27期69-72,75,共5页
基于二维主成分分析(2DPCA),文章提出了分块二维主成分分析(M2DPCA)人脸识别方法。M2DPCA从模式的原始数字图像出发,先对图像进行分块,对分块得到的子图像矩阵采用2DPCA方法进行特征抽取,从而实现模式的分类。新方法的特点是能有效地抽... 基于二维主成分分析(2DPCA),文章提出了分块二维主成分分析(M2DPCA)人脸识别方法。M2DPCA从模式的原始数字图像出发,先对图像进行分块,对分块得到的子图像矩阵采用2DPCA方法进行特征抽取,从而实现模式的分类。新方法的特点是能有效地抽取图像的局部特征,正是这些特征使此类模式区别于彼类。在ORL人脸数据库上测试了该方法的鉴别能力。实验的结果表明,M2DPCA在鉴别性能上优于通常的2DPCA和PCA方法,也优于基于Fisher鉴别准则的鉴别分析方法:Fisherfaces方法、F-S方法和J-Y方法。 展开更多
关键词 线性鉴别分析 特征抽取 二维成分分析 分块二维成分分析 人脸识别
在线阅读 下载PDF
基于分块核主成分分析和支持向量机的故障检测 被引量:12
5
作者 李锦冰 韩冰 +4 位作者 冯守渤 张佳冬 李宇 钟凯 韩敏 《控制理论与应用》 EI CAS CSCD 北大核心 2020年第4期847-854,共8页
针对工业系统监测数据为非线性,且难以辨识复杂工作过程中故障位置的问题,提出一种基于分块核主成分分析(BKPCA)和最小二乘支持向量机(LS-SVM)的集成故障检测方法.首先对系统监测变量进行分块,使用KPCA对每个分块在特征空间中建立T2和... 针对工业系统监测数据为非线性,且难以辨识复杂工作过程中故障位置的问题,提出一种基于分块核主成分分析(BKPCA)和最小二乘支持向量机(LS-SVM)的集成故障检测方法.首先对系统监测变量进行分块,使用KPCA对每个分块在特征空间中建立T2和平方预测误差(SPE)统计量来实时监测系统健康状态,并使用LS-SVM对上述过程检测出来的故障数据进行再次判断.随后计算出现故障后计算每一分块的故障贡献率,进而确定发生故障的分块.由于采用了并行分块算法,可以较简单的确定故障发生位置,提高计算效率,同时LS-SVM方法的应用也可以提升故障检测的精度.使用田纳西-伊斯曼化工(TE)过程数据对本文所提方法进行仿真验证,试验结果表明所提方法取得了较好效果. 展开更多
关键词 故障检测 分块成分分析 最小二乘支持向量机 特征提取
在线阅读 下载PDF
基于分块双向二维主成分分析的步态识别 被引量:1
6
作者 卢威 陈后金 《计算机应用与软件》 CSCD 2011年第9期232-234,共3页
提出了一种基于步态能量图和分块双向二维主成分分析进行步态特征的算法。首先对图像序列预处理提取运动轮廓,通过分析区域分布直方图检测出运动周期,生成步态能量图描述步态的空间和时间特性,继而使用分块双向二维主成分提取步态特征... 提出了一种基于步态能量图和分块双向二维主成分分析进行步态特征的算法。首先对图像序列预处理提取运动轮廓,通过分析区域分布直方图检测出运动周期,生成步态能量图描述步态的空间和时间特性,继而使用分块双向二维主成分提取步态特征用以分类,最后在USF步态数据库上测试,并与其它几个算法进行比较。实验结果显示,该方法有更高的识别率和更低的计算复杂度。 展开更多
关键词 步态识别 步态能量图 二维成分分析 分块双向二维成分分析 特征提取
在线阅读 下载PDF
二维主成分分析方法的推广及其在人脸识别中的应用 被引量:20
7
作者 陈伏兵 陈秀宏 +1 位作者 高秀梅 杨静宇 《计算机应用》 CSCD 北大核心 2005年第8期1767-1770,共4页
提出了分块二维主成分分析(分块2DPCA)的人脸识别方法。分块2DPCA方法先对图像矩阵进行分块,对分块得到的子图像矩阵直接进行鉴别分析。其特点是:能方便地降低鉴别特征的维数;可以完全避免使用矩阵的奇异值分解,特征抽取方便;与2DPCA方... 提出了分块二维主成分分析(分块2DPCA)的人脸识别方法。分块2DPCA方法先对图像矩阵进行分块,对分块得到的子图像矩阵直接进行鉴别分析。其特点是:能方便地降低鉴别特征的维数;可以完全避免使用矩阵的奇异值分解,特征抽取方便;与2DPCA方法相比,使用低维的鉴别特征矩阵,而达到较高(至少是不低)的正确识别率。此外,2DPCA是分块2DPCA的特例。在ORL和NUST603人脸库上的试验结果表明,所提出的方法在识别性能上优于2DPCA方法。 展开更多
关键词 线性鉴别分析 特征抽取 分块二维成分分析 特征矩阵 人脸识别
在线阅读 下载PDF
分块PCA鉴别特征抽取能力的分析研究 被引量:17
8
作者 陈伏兵 谢永华 +1 位作者 严云洋 杨静宇 《计算机科学》 CSCD 北大核心 2006年第3期155-159,共5页
基于主成分分析(Principal Component Analysis,PCA),本文提出了分块 PCA 人脸识别方法。分块 PCA 从模式的原始数字图像出发,先对图像进行分块,对分块得到的子图像矩阵采用 PCA 方法进行特征抽取,从而实现模式的分类。新方法的特点是... 基于主成分分析(Principal Component Analysis,PCA),本文提出了分块 PCA 人脸识别方法。分块 PCA 从模式的原始数字图像出发,先对图像进行分块,对分块得到的子图像矩阵采用 PCA 方法进行特征抽取,从而实现模式的分类。新方法的特点是能有效地抽取图像的局部特征,正是这些特征使此类模式区别于彼类。在 Yale 人脸数据库上测试了该方法的鉴别能力。实验的结果表明,分块 PCA 在识别性能上优于通常的 PCA 方法,也优于基于 Fisher 鉴别准则的鉴别分析方法:Fisherfaces 方法、F-S 方法、组合鉴别方法,识别率可以达到100%。 展开更多
关键词 线性鉴别分析 成分分析 特征抽取 分块主成分分析 人脸识别
在线阅读 下载PDF
基于分块PCA与端元提取的壁画线条增强研究 被引量:2
9
作者 毛锦程 吕书强 +1 位作者 侯妙乐 汪万福 《图学学报》 CSCD 北大核心 2022年第3期425-433,共9页
线状特征是壁画中的重要元素。然而受到自然及人为因素的影响,壁画的部分线条常常变得模糊,人眼难以辨别。因此,提出一种利用高光谱影像分块主成分分析(PCA)与端元提取相结合的线状特征增强方法。首先,利用支持向量机(SVM)对壁画的合成... 线状特征是壁画中的重要元素。然而受到自然及人为因素的影响,壁画的部分线条常常变得模糊,人眼难以辨别。因此,提出一种利用高光谱影像分块主成分分析(PCA)与端元提取相结合的线状特征增强方法。首先,利用支持向量机(SVM)对壁画的合成真彩色影像进行分类,根据分类结果得到壁画标签数据,实现高光谱影像同质区域的分块数据。其次,对各分块影像进行顶点成分分析(VCA)得到候选端元集,通过构造投影矩阵合并相似端元确定最终端元集。然后,利用非负最小二乘算法解混得到线条丰度图。最后,将分块PCA的第一主成分影像归一化后与线条丰度图进行波段加权平均获取线状特征增强影像,将其与合成真彩色影像进行HSV图像融合得到线状特征融合影像。以瞿昙寺壁画局部高光谱影像为例进行了验证,结果表明,该算法能增强壁画中的线状特征,且较PCA增强法效果更好。 展开更多
关键词 高光谱影像 线状特征 分块主成分分析 图像解混 壁画
在线阅读 下载PDF
基于分块的2DPCA人脸识别方法 被引量:2
10
作者 李靖平 《长春师范学院学报(自然科学版)》 2014年第1期40-44,共5页
将分块理论与2DPCA方法相结合,研究分块二维主成分分析法(M-2DPCA)在人脸识别中的应用.对人脸图像矩阵进行分块,用形成的子图像矩阵直接构造总体散布矩阵并求解对应的特征向量,利用提取的特征向量对图像进行特征的提取与分析,进行人... 将分块理论与2DPCA方法相结合,研究分块二维主成分分析法(M-2DPCA)在人脸识别中的应用.对人脸图像矩阵进行分块,用形成的子图像矩阵直接构造总体散布矩阵并求解对应的特征向量,利用提取的特征向量对图像进行特征的提取与分析,进行人脸识别.基于Yale人脸数据库的实验显示,在相同训练样本和特征向量条件下,M-2DPCA比2DPCA算法具有更高的识别率.M-2DPCA充分利用了图像的协方差信息,在人脸识别方面具有较高的识别率和鲁棒性方面,对进一步研究人脸识别具有重要的意义. 展开更多
关键词 二维成分分析 分块二维成分分析 特征提取 人脸识别
在线阅读 下载PDF
基于分块的2DPCA人脸识别方法
11
作者 李靖平 《浙江万里学院学报》 2014年第2期93-98,97,共6页
文章将分块理论与2DPCA方法相结合,研究分块二维主成分分析法(M-2DPCA)在人脸识别中的应用。对人脸图像矩阵进行分块,用形成的子图像矩阵直接构造总体散布矩阵并求解对应的特征向量,利用提取的特征向量对图像进行特征的提取与分析... 文章将分块理论与2DPCA方法相结合,研究分块二维主成分分析法(M-2DPCA)在人脸识别中的应用。对人脸图像矩阵进行分块,用形成的子图像矩阵直接构造总体散布矩阵并求解对应的特征向量,利用提取的特征向量对图像进行特征的提取与分析,进行人脸识别。基于Yale人脸数据库的实验显示,在相同训练样本和特征向量条件下,M-2DPCA比2DPCA算法具有更高的识别率。结论 M-2DPCA充分利用了图像的协方差信息,在人脸识别方面具有较高的识别率和鲁棒性方面,对进一步研究人脸识别具有重要的意义。 展开更多
关键词 二维成分分析 分块二维成分分析 特征提取 人脸识别 TWO-DIMENSIONAL Principal COMPONENT Analysis (2DPCA)
在线阅读 下载PDF
一种改进的人脸识别算法
12
作者 宁佐廷 《网友世界》 2012年第6期42-43,共2页
分块主成分分析算法(PCA)在提取人脸特征时是按照分块进行的,它获得的特征矩阵的维数大于PCA方法得到特征的维数。针对这种情况,本文提出了一种改进的分块主成分分析算法,该算法首先对每个子图像集分别求解散布矩阵,并根据此散布矩阵... 分块主成分分析算法(PCA)在提取人脸特征时是按照分块进行的,它获得的特征矩阵的维数大于PCA方法得到特征的维数。针对这种情况,本文提出了一种改进的分块主成分分析算法,该算法首先对每个子图像集分别求解散布矩阵,并根据此散布矩阵求出投影矩阵;然后将子图像投影到对应投影矩阵上得到特征向量,由此特征向量进而求出相应子图像间的子距离;最后将图像的所有子距离相加得到图像间的距离,根据最近邻分类器进行分类识别。实验表明,本文方法不仅提高了识别率,而且减少了所需的鉴别矢量,具有很好的识别效果。 展开更多
关键词 成分分析 分块主成分分析 散步矩阵 子距离
在线阅读 下载PDF
Adaptive partitioning PCA model for improving fault detection and isolation 被引量:6
13
作者 刘康玲 金鑫 +1 位作者 费正顺 梁军 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第6期981-991,共11页
In chemical process, a large number of measured and manipulated variables are highly correlated. Principal component analysis(PCA) is widely applied as a dimension reduction technique for capturing strong correlation ... In chemical process, a large number of measured and manipulated variables are highly correlated. Principal component analysis(PCA) is widely applied as a dimension reduction technique for capturing strong correlation underlying in the process measurements. However, it is difficult for PCA based fault detection results to be interpreted physically and to provide support for isolation. Some approaches incorporating process knowledge are developed, but the information is always shortage and deficient in practice. Therefore, this work proposes an adaptive partitioning PCA algorithm entirely based on operation data. The process feature space is partitioned into several sub-feature spaces. Constructed sub-block models can not only reflect the local behavior of process change, namely to grasp the intrinsic local information underlying the process changes, but also improve the fault detection and isolation through the combination of local fault detection results and reduction of smearing effect.The method is demonstrated in TE process, and the results show that the new method is much better in fault detection and isolation compared to conventional PCA method. 展开更多
关键词 Adaptive partitioning Fault detection Fault isolation Principal component analysis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部