期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
一维对称空间分数阶对流弥散方程的数值解 被引量:2
1
作者 李新洁 李功胜 贾现正 《山东理工大学学报(自然科学版)》 CAS 2011年第2期52-55,共4页
探讨了有限区域上一维对称的空间分数阶对流弥散方程的数值求解问题.基于Grunwald-Letnikov分数阶导数的定义,推导了一个有限差分格式,并讨论了分数微分阶数、弥散系数及平均流速对数值解的影响.
关键词 分数阶对流弥散方程 Grunwald-Letnikov分数导数 有限差分 数值解
在线阅读 下载PDF
一类带有Robin边界条件的分数阶对流弥散方程的差分方法 被引量:1
2
作者 尹修草 刘桃花 《邵阳学院学报(自然科学版)》 2021年第2期1-7,共7页
考虑了一类带有Robin边界条件的分数阶对流弥散方程,给该方程建立了一种隐式有限差分格式,然后证明了该格式的解的存在唯一性、稳定性和收敛性,最后,用数值例子验证了差分方法的有效性。
关键词 分数阶对流弥散方程 Robin边界条件 稳定性 收敛性
在线阅读 下载PDF
一类带有Dirichlet边界条件的分数阶对流弥散方程解的多重性
3
作者 王怡 《应用数学进展》 2020年第6期947-958,共12页
本文研究了带有Dirichlet边界条件的分数阶对流弥散方程耦合系统的多解问题。基于变分方法和一个三临界点定理,我们得到了该分数阶系统至少有三个解的结果。
关键词 分数阶对流弥散方程 耦合系统 变分方法 多重解
在线阅读 下载PDF
一类分数阶对流弥散方程差分方法
4
作者 梁倩 陈豫眉 张治国 《贵州科学》 2023年第3期67-72,共6页
讨论了带有分数阶初边值问题的分数阶对流弥散方程,分别利用标准和移位的Grünwald-Letnikov分数阶算子离散方程以及边界条件中的Riemann-Liouville分数阶导数,并构造了相应的隐式有限差分格式和矩阵格式,证明了该差分格式的稳定性... 讨论了带有分数阶初边值问题的分数阶对流弥散方程,分别利用标准和移位的Grünwald-Letnikov分数阶算子离散方程以及边界条件中的Riemann-Liouville分数阶导数,并构造了相应的隐式有限差分格式和矩阵格式,证明了该差分格式的稳定性和收敛性。最后通过数值算例验证了其有效性。 展开更多
关键词 分数阶对流弥散方程 分数边界条件 稳定性 收敛性
在线阅读 下载PDF
考虑时空相关的分数阶对流—弥散方程及其解 被引量:9
5
作者 常福宣 吴吉春 +1 位作者 薛禹群 戴水汉 《水动力学研究与进展(A辑)》 CSCD 北大核心 2005年第2期233-240,共8页
本文在考虑弥散过程的时空相关性的基础上,用非局域性的处理方法,将二阶对流—弥散方程进行推广得到了分数阶的对流—弥散方程,方程中弥散项和对时间的导数被分数阶导数所代替。此方程的柯西问题的格林函数解是一分数稳定分布密度函数... 本文在考虑弥散过程的时空相关性的基础上,用非局域性的处理方法,将二阶对流—弥散方程进行推广得到了分数阶的对流—弥散方程,方程中弥散项和对时间的导数被分数阶导数所代替。此方程的柯西问题的格林函数解是一分数稳定分布密度函数。由方程的稳定分布密度函数解说明了局域等效弥散系数与弥散过程有关,得出了等效弥散系数与运移尺度有关,是运移距离的幂函数的结论。这一结论从理论上解释了弥散系数的尺度效应。最后,用一实验的实测数据对所得结果进行检验,检验结果很好地说明了弥散过程中的偏态特征和“拖尾”现象,而传统二阶对流—弥散方程的高斯分布解却不能解释。因此,用分数阶的对流—弥散方程比二阶对流—弥散方程能更好的描述溶质在多孔介质中的弥散行为。 展开更多
关键词 分数对流-弥散方程 分数微积分 时空相关性 等效弥散系数
在线阅读 下载PDF
二维分数阶对流-弥散方程的数值解 被引量:9
6
作者 周璐莹 吴吉春 夏源 《高校地质学报》 CAS CSCD 北大核心 2009年第4期569-575,共7页
对二维时间分数阶对流-弥散方程和二维空间分数阶对流-弥散方程分别建立了差分格式,实现了对其的数值求解。针对理想算例进行计算求解,分析了时间和空间分数阶阶数取不同值时的扩散变化规律,验证了各自所描述的时间相关性与空间相关性... 对二维时间分数阶对流-弥散方程和二维空间分数阶对流-弥散方程分别建立了差分格式,实现了对其的数值求解。针对理想算例进行计算求解,分析了时间和空间分数阶阶数取不同值时的扩散变化规律,验证了各自所描述的时间相关性与空间相关性。同时与传统的二维整数阶对流-弥散方程的求解结果作了对比。当时间和空间分数阶阶数α与γ分别取整数时,二维时间分数阶对流-弥散方程和二维空间分数阶对流-弥散方程都与传统二维整数阶对流-弥散方程的计算结果相同,说明提出的对二维分数阶对流-弥散方程的数值求解方法是可行的。其结果对地下水溶质运移的进一步研究提供了有效的手段。 展开更多
关键词 二维分数对流-弥散方程 反常扩散 时空相关性 数值解 溶质运移
在线阅读 下载PDF
分数阶对流——弥散方程的数值求解 被引量:13
7
作者 夏源 吴吉春 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第4期441-446,共6页
对严格的时间分数阶对流——弥散方程和严格的空间分数阶对流——弥散方程分别建立了差分格式,并用所建立的两个差分格式对同一理想算例进行了求解.通过对分数阶导数取不同的参数值,得到一系列结果,分析了不同分数阶导数描述的反常扩散... 对严格的时间分数阶对流——弥散方程和严格的空间分数阶对流——弥散方程分别建立了差分格式,并用所建立的两个差分格式对同一理想算例进行了求解.通过对分数阶导数取不同的参数值,得到一系列结果,分析了不同分数阶导数描述的反常扩散现象及其变化规律,并和传统的整数阶对流——弥散方程的求解结果进行了对比.当时间分数阶对流——弥散方程和空间分数阶对流——弥散方程的分数阶导数的参数分别取整数值时,时间分数阶对流——弥散方程、空间分数阶对流——弥散方程和传统整数阶对流——弥散方程的计算结果相同,表明本文提出的对时间分数阶对流——弥散方程和空间对流——弥散方程数值求解方法是可行的,且整数阶对流——弥散方程是分数阶对流——弥散方程的特殊情况.和正常扩散相比,时间分数阶对流——弥散方程中分数阶导数的参数值越小,溶质扩散得越慢,表现为拖尾分布:空间分数阶对流——弥散方程中分数阶导数的参数值越小,溶质扩散得越快,表明空间的非局域性相关性越强. 展开更多
关键词 分数对流——弥散方程 反常扩散 时空相关性 数值求解
在线阅读 下载PDF
时空分数阶对流-弥散方程组的有限元方法
8
作者 吴红英 《吉首大学学报(自然科学版)》 CAS 2016年第1期7-10,共4页
时间空间分数阶对流-弥散方程组一般没有解析解,有限元方法是进行数值模拟的有效途径.先对微分方程组进行时间半离散,然后推导出固定时间层的变分公式和有限元方程组,同时给出求解有限元解的一种线性迭代算法.数值实例表明,三次有限元... 时间空间分数阶对流-弥散方程组一般没有解析解,有限元方法是进行数值模拟的有效途径.先对微分方程组进行时间半离散,然后推导出固定时间层的变分公式和有限元方程组,同时给出求解有限元解的一种线性迭代算法.数值实例表明,三次有限元迭代算法的时空收敛阶分别为2-αi和4. 展开更多
关键词 分数对流-弥散方程 分数微分算子 变分问题 有限元方法 迭代算法
在线阅读 下载PDF
分数阶对流-弥散方程的有限差分方法 被引量:7
9
作者 尹修草 周均 胡兵 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第3期409-413,共5页
本文对分数阶对流-弥散方程的初边值问题进行了数值研究.我们采用移位Grun-wald公式对空间分数阶导数进行离散,在此基础上建立Crank-Nichonlson(简称C-N)差分格式,并讨论了差分解的存在唯一性,然后分析了该方法的稳定性及收敛性,并利用... 本文对分数阶对流-弥散方程的初边值问题进行了数值研究.我们采用移位Grun-wald公式对空间分数阶导数进行离散,在此基础上建立Crank-Nichonlson(简称C-N)差分格式,并讨论了差分解的存在唯一性,然后分析了该方法的稳定性及收敛性,并利用外推法提高收敛阶.数值算例验证了格式的有效性. 展开更多
关键词 分数对流-弥散方程 C-N差分格式 无条件稳定 收敛性
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部