期刊文献+
共找到73篇文章
< 1 2 4 >
每页显示 20 50 100
多项时间分数阶混合扩散-波动方程ADI有限差分法
1
作者 黎丽梅 易云玲 +1 位作者 郭欣雨 郭广源 《湖南理工学院学报(自然科学版)》 CAS 2024年第3期1-7,共7页
用交替方向隐式(ADI)有限差分法研究多项时间分数阶混合扩散-波动方程的数值解,在时间方向上,采用降阶的方法,将扩散项和波动项转化为RL积分项和扩散项,分别使用L2-1_(σ)和L1公式逼近;空间方向结合二阶中心差商离散,并通过数值算例验... 用交替方向隐式(ADI)有限差分法研究多项时间分数阶混合扩散-波动方程的数值解,在时间方向上,采用降阶的方法,将扩散项和波动项转化为RL积分项和扩散项,分别使用L2-1_(σ)和L1公式逼近;空间方向结合二阶中心差商离散,并通过数值算例验证差分格式的有效性. 展开更多
关键词 多项时间分数阶混合扩散-波动方程 交替方向隐式法 有限差分法
在线阅读 下载PDF
分离变量法解三维的分数阶混合扩散-波动方程的初边值问题 被引量:1
2
作者 王学彬 《武夷学院学报》 2008年第5期18-21,43,共5页
本文考虑在有限区间上三维的时间分数阶混合扩散-波动方程的初边值问题。使用分离变量法,导出三维的时间分数阶混合扩散方程和初边值问题的基本解。
关键词 分数阶混合扩散-波动方程 初边值问题 分离变量法 CAPUTO导数
在线阅读 下载PDF
非线性时间分数阶四阶混合次扩散和扩散波动方程的混合有限元算法
3
作者 杨宁 《应用数学进展》 2024年第4期1415-1424,共10页
本文数值求解了一个二维非线性时间分数阶四阶混合次扩散和扩散波动方程,在时间方向上采用L1-CN格式,在空间上通过混合有限元方法进行离散,并且在此基础上,给出了它的全离散格式。最后针对该数值格式提供了算法过程和数值算例,以及详细... 本文数值求解了一个二维非线性时间分数阶四阶混合次扩散和扩散波动方程,在时间方向上采用L1-CN格式,在空间上通过混合有限元方法进行离散,并且在此基础上,给出了它的全离散格式。最后针对该数值格式提供了算法过程和数值算例,以及详细的收敛结果。 展开更多
关键词 非线性时间分数混合扩散扩散波动方程 L1-CN格式 混合有限元方法 数值算例
在线阅读 下载PDF
求解一维非齐次分数阶扩散-波动方程的混合边值问题 被引量:3
4
作者 张晓娟 刘发旺 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第4期515-519,共5页
考虑一维分数阶扩散-波动方程的混合边值问题.利用分离变量方法导出了在混合边界条件下的非齐次分数阶扩散-波动方程的解析解.
关键词 分数扩散-波动方程 分离变量方法 非齐次问题 混合边界条件 解析解
原文传递
分离变量法解三维的分数阶扩散-波动方程的初边值问题 被引量:7
5
作者 王学彬 刘发旺 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第4期520-525,共6页
考虑在有限区间上三维的时间分数阶扩散-波动方程的初边值问题.当时间分数阶导数的阶α从0变到2时,解的性态变化从慢的扩散到传统的扩散,再到混合扩散-波动.利用分离变量法,分别导出三维的非齐次时间分数阶扩散方程和非齐次时间分数阶扩... 考虑在有限区间上三维的时间分数阶扩散-波动方程的初边值问题.当时间分数阶导数的阶α从0变到2时,解的性态变化从慢的扩散到传统的扩散,再到混合扩散-波动.利用分离变量法,分别导出三维的非齐次时间分数阶扩散方程和非齐次时间分数阶扩散-波动方程的初边值问题的基本解. 展开更多
关键词 分数扩散-波动方程 初边值问题 分离变量法 CAPUTO导数
原文传递
Coimbra变时间分数阶扩散-波动方程的新隐式差分法 被引量:4
6
作者 马亮亮 刘冬兵 《西南师范大学学报(自然科学版)》 CAS 北大核心 2015年第3期25-31,共7页
将一阶的时间偏导数用Coimbra变时间分数阶导数算子进行替换,提出了一种新隐式差分解法.首先,对Coimbra型变时间分数阶导数算子和二阶空间导数进行离散化处理,将Coimbra变时间分数阶扩散-波动方程转化为代数方程组求解;然后,借助于数学... 将一阶的时间偏导数用Coimbra变时间分数阶导数算子进行替换,提出了一种新隐式差分解法.首先,对Coimbra型变时间分数阶导数算子和二阶空间导数进行离散化处理,将Coimbra变时间分数阶扩散-波动方程转化为代数方程组求解;然后,借助于数学归纳法给出了新隐式差分方法的收敛性分析,并证明了新隐式差分方法是无条件收敛的;最后,通过数值例子检验该方法,计算结果表明新隐式差分方法的理论分析是正确的,所构造的离散格式是可行的和有效的. 展开更多
关键词 分数扩散 波动方程 Coimbra变时间分数导数 收敛性 稳定性 数值解 新隐式差分格式
在线阅读 下载PDF
多项时间分数阶扩散方程H^(1)-Galerkin混合元方法的超逼近分析 被引量:1
7
作者 史艳华 王芬玲 《许昌学院学报》 CAS 2022年第5期1-6,共6页
主要讨论二维多项时间分数阶扩散方程的H^(1)-Galerkin混合元方法.空间上借助不完全双二次元和一阶BDFM元,时间方向上利用修正的L^(1)格式,建立了该方程的全离散逼近格式.首先证明了该格式的稳定性.然后借助单元性质和已有的高精度结果... 主要讨论二维多项时间分数阶扩散方程的H^(1)-Galerkin混合元方法.空间上借助不完全双二次元和一阶BDFM元,时间方向上利用修正的L^(1)格式,建立了该方程的全离散逼近格式.首先证明了该格式的稳定性.然后借助单元性质和已有的高精度结果,得到了原始变量在H^(1)模意义下和中间变量在H(div,Ω)模意义下具有O(h^(3)+τ^(2-αs))的超逼近结果,这里h为空间步长,τ为时间步长,α_(s)为分数阶微分算子的最高阶数. 展开更多
关键词 多项时间分数扩散方程 H^(1)-Galerkin混合元方法 稳定性 超逼近
在线阅读 下载PDF
求解四阶多项时间分数阶混合扩散-波方程的二阶差分格式
8
作者 高广花 徐鹏 《扬州大学学报(自然科学版)》 CAS 北大核心 2022年第4期24-35,共12页
为求解二维四阶多项时间分数阶混合扩散-波方程,基于降阶法将时间分数阶扩散项和分数阶波动项分别转换为时间分数阶积分项和扩散项,并在时间方向分别应用L2-1公式和分片线性插值方法进行离散,对空间四阶导数项也进行降阶处理,建立差分... 为求解二维四阶多项时间分数阶混合扩散-波方程,基于降阶法将时间分数阶扩散项和分数阶波动项分别转换为时间分数阶积分项和扩散项,并在时间方向分别应用L2-1公式和分片线性插值方法进行离散,对空间四阶导数项也进行降阶处理,建立差分求解格式.利用能量分析法对所得格式的稳定性和收敛性进行严格分析,结果显示其无条件稳定且在时间和空间方向上都是二阶收敛.数值算例证实所得数值格式的精度和有效性. 展开更多
关键词 多项时间分数混合扩散-方程 差分格式 稳定性 收敛性
在线阅读 下载PDF
有限区间上的分数阶扩散-波方程混合问题
9
作者 朱波 韩宝燕 《临沂师范学院学报》 2006年第3期26-28,66,共4页
利用分离变量法,Laplace变换及广义Mittage-Leffler函数,给出了有限区间上分数阶扩散-波方程混合问题的精确解.
关键词 Riemann-Liouville(R—L)分数导数 分数扩散-方程 分离变量 LAPLACE变换 广义Mittage-Leffler函数
在线阅读 下载PDF
分数阶扩散-波动方程数值求解 被引量:4
10
作者 彭文婷 文立平 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第4期508-511,516,共5页
针对Caputo分数阶导数意义下的时间分数阶扩散-波动方程进行数值研究.利用Caputo分数阶导数与Grunwald-Letnikov分数阶导数的关系对时间分数阶导数进行时间离散化处理,再利用二阶中心差商离散方程中的二阶空间导数,并结合边值条件的离散... 针对Caputo分数阶导数意义下的时间分数阶扩散-波动方程进行数值研究.利用Caputo分数阶导数与Grunwald-Letnikov分数阶导数的关系对时间分数阶导数进行时间离散化处理,再利用二阶中心差商离散方程中的二阶空间导数,并结合边值条件的离散化,把离散化方程的求解转化为一个线性方程组的求解.利用Mat-lab编程实现了离散化方程组的求解,并绘制了不同参数下的数值解曲面. 展开更多
关键词 扩散-波动方程 分数导数 数值解
原文传递
时间分数阶反应-扩散方程混合差分格式的并行计算方法 被引量:1
11
作者 党旭 杨晓忠 《高校应用数学学报(A辑)》 北大核心 2019年第3期325-338,共14页
分数阶反应-扩散方程有深刻的物理和工程背景,其数值方法的研究具有重要的科学意义和应用价值.文中提出时间分数阶反应-扩散方程混合差分格式的并行计算方法,构造了一类交替分段显-隐格式(alternative segment explicit-implicit,ASE-I... 分数阶反应-扩散方程有深刻的物理和工程背景,其数值方法的研究具有重要的科学意义和应用价值.文中提出时间分数阶反应-扩散方程混合差分格式的并行计算方法,构造了一类交替分段显-隐格式(alternative segment explicit-implicit,ASE-I)和交替分段隐-显格式(alternative segment implicit-explicit,ASI-E),这类并行差分格式是基于Saul’yev非对称格式与古典显式差分格式和古典隐式差分格式的有效组合.理论分析格式解的存在唯一性,无条件稳定性和收敛性.数值试验验证了理论分析,表明ASE-I格式和ASI-E格式具有理想的计算精度和明显的并行计算性质,证实了这类并行差分方法求解时间分数阶反应-扩散方程是有效的. 展开更多
关键词 时间分数反应-扩散方程 ASE-I格式 ASI-E格式 无条件稳定性 收敛
在线阅读 下载PDF
一类半线性时间分数阶扩散-波动方程解的整体存在唯一性
12
作者 何鑫海 刘梅 杨晗 《数学物理学报(A辑)》 CSCD 北大核心 2022年第6期1705-1718,共14页
该文研究一类半线性时间分数阶扩散-波动方程的柯西问题,基于线性问题的L^(r)-L^(q)估计,通过整体迭代法,在小初值的情况下研究非线性项指数对于解的整体存在性影响,在指数满足一定条件的情况下证明了整体解的存在唯一性.
关键词 时间分数扩散-波动方程 柯西问题 小初值 整体解
在线阅读 下载PDF
时间分数阶反应-扩散方程的隐式差分近似 被引量:20
13
作者 于强 刘发旺 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第3期315-319,共5页
考虑时间分数阶反应-扩散方程,它是从标准的反应-扩散方程中用分数阶导数α(0<α<1)代替一阶时间导数而得到.提出了一个计算有效的隐式差分近似.利用分数阶离散系数的特点,证明了这个隐式差分近似是无条件稳定的,并且也证明了它... 考虑时间分数阶反应-扩散方程,它是从标准的反应-扩散方程中用分数阶导数α(0<α<1)代替一阶时间导数而得到.提出了一个计算有效的隐式差分近似.利用分数阶离散系数的特点,证明了这个隐式差分近似是无条件稳定的,并且也证明了它的收敛性.最后给出数值例子. 展开更多
关键词 时间分数 反应-扩散方程 隐式差分近似 稳定性 收敛性
在线阅读 下载PDF
有限区间上的分数阶扩散-波方程定解问题与Laplace变换 被引量:9
14
作者 段俊生 徐明瑜 《高校应用数学学报(A辑)》 CSCD 北大核心 2004年第2期165-171,共7页
求解了如下的分数阶扩散-波方程定解问题0Dαtu=2ux2,0<x<1,t>0,0<α≤2,u(0,t;α)=0,u(1,t;α)=θ(t),u(x,0+;α)=0,当1<α≤2时,还有ut(x,0+;α)=0.其中θ(t)是Heaviside单位阶跃函数,0Dαt为关于时间t的α阶Caput... 求解了如下的分数阶扩散-波方程定解问题0Dαtu=2ux2,0<x<1,t>0,0<α≤2,u(0,t;α)=0,u(1,t;α)=θ(t),u(x,0+;α)=0,当1<α≤2时,还有ut(x,0+;α)=0.其中θ(t)是Heaviside单位阶跃函数,0Dαt为关于时间t的α阶Caputo分数阶导数算子,u=u(x,t;α)为时间t的因果函数(即t<0时恒为零的函数).利用Laplace变换的复围道积分反演和离散化反演及FoxH函数理论,给出在计算上对大的t和小的t分别适用的解的表达式. 展开更多
关键词 CAPUTO分数导数 LAPLACE变换 FOX H函数 分数扩散-方程
在线阅读 下载PDF
变系数空间分数阶对流-扩散方程的隐式差分逼近 被引量:9
15
作者 马亮亮 田富鹏 《中北大学学报(自然科学版)》 CAS 北大核心 2014年第1期11-14,共4页
在一般对流-扩散方程的基础上,研究了变系数空间分数阶对流-扩散方程的隐式差分逼近格式.利用Grünwald改进型公式和时间、空间一阶差商公式对分数阶导数进行离散,提出了一个计算有效的隐式差分近似.利用分数阶离散系数的特点和Lax... 在一般对流-扩散方程的基础上,研究了变系数空间分数阶对流-扩散方程的隐式差分逼近格式.利用Grünwald改进型公式和时间、空间一阶差商公式对分数阶导数进行离散,提出了一个计算有效的隐式差分近似.利用分数阶离散系数的特点和Lax等价定理,证明了这个差分格式是无条件稳定的,并且证明了它的收敛性.最后通过数值例子验证了提出的差分格式是可靠和有效的. 展开更多
关键词 对流-扩散方程 分数导数 隐式差分 稳定性 收敛性
在线阅读 下载PDF
Riesz分数阶反应-扩散方程数值近似的稳定性与收敛性分析 被引量:5
16
作者 陈景华 刘发旺 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第4期466-469,共4页
分数阶微分方程可以用来模拟工程,物理,生物等科学领域中的许多现象,然而分数阶微分方程的数值方法与理论分析是一项困难的事,其理论分析与经典的数值方法之间有很大的差异.本文考虑一个Riesz分数阶反应-扩散方程.这个方程是将一般的反... 分数阶微分方程可以用来模拟工程,物理,生物等科学领域中的许多现象,然而分数阶微分方程的数值方法与理论分析是一项困难的事,其理论分析与经典的数值方法之间有很大的差异.本文考虑一个Riesz分数阶反应-扩散方程.这个方程是将一般的反应-扩散方程的二阶导用Riesz导数来替换.利用Riemann-Liouville定义和Grünwald-Letnikov定义之间的关系,我们提出了一个显示的数值近似,同时讨论了稳定性与收敛性,并给出数值例子. 展开更多
关键词 Riesz反应-扩散方程 分数导数 Riemann-Liouville Grünwald-Letnikov 稳定性 收敛性
在线阅读 下载PDF
两边空间-时间分数阶扩散方程的加权有限差分格式(英文) 被引量:4
17
作者 马维元 刘华 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期41-48,70,共9页
对于空间-时间分数阶扩散方程的初边值问题提出了一种加权差分格式.利用能量估计,得到了差分格式的稳定性.然后使用数学归纳法证明了在相同的条件下,所提出的的格式是收敛的.最后通过一个例子说明了所提出的格式是可靠的、有效的.
关键词 分数扩散方程 空间-时间分数导数 加权差分格式 收敛性 稳定性
在线阅读 下载PDF
两边空间分数阶对流-扩散方程的一种加权显式有限差分方法 被引量:3
18
作者 马亮亮 刘冬兵 《四川师范大学学报(自然科学版)》 CAS 北大核心 2016年第1期76-82,共7页
考虑两边空间分数阶对流-扩散方程的初边值问题,基于Grünwald公式和移位Grünwald-Letnikov公式,提出一种加权显式有限差分解法.利用傅里叶变换和特征值法,得到差分格式的稳定性.然后使用最大模估计法证明在相同的条件下,所提... 考虑两边空间分数阶对流-扩散方程的初边值问题,基于Grünwald公式和移位Grünwald-Letnikov公式,提出一种加权显式有限差分解法.利用傅里叶变换和特征值法,得到差分格式的稳定性.然后使用最大模估计法证明在相同的条件下,所提出的差分格式是收敛的.最后通过数值例子说明所提出的差分格式是可靠和有效的,并对方程的数值解与精确解进行比较,验证了文中的理论结果. 展开更多
关键词 分数对流-扩散方程 空间分数导数 加权差分格式 收敛性 稳定性 有限差分法
在线阅读 下载PDF
Caputo分数阶反应-扩散方程的隐式差分逼近 被引量:14
19
作者 陈景华 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第5期616-619,共4页
分数阶微分方程在许多应用科学上比整数阶微分方程更能准确地模拟自然现象.本文考虑分数阶反应-扩散方程.将一阶的时间偏导数用Caputo分数阶导数替换,并给出了一个隐式的差分格式.利用能量方法给出此差分格式的稳定性与收敛性证明,最后... 分数阶微分方程在许多应用科学上比整数阶微分方程更能准确地模拟自然现象.本文考虑分数阶反应-扩散方程.将一阶的时间偏导数用Caputo分数阶导数替换,并给出了一个隐式的差分格式.利用能量方法给出此差分格式的稳定性与收敛性证明,最后用数值例子说明差分格式是有效的. 展开更多
关键词 分数反应-扩散方程 CAPUTO导数 能量方法 稳定性 收敛性
在线阅读 下载PDF
时间分数阶对流-扩散方程的有限差分方法 被引量:8
20
作者 卢旋珠 《福州大学学报(自然科学版)》 CAS CSCD 2004年第4期423-426,共4页
研究时间分数阶常系数对流-扩散方程的数值解,提出了一种只需要存储部分历史数据的分数阶微分方程的数值计算方法,并给出了误差估计.
关键词 对流-扩散方程 分数导数 有限差系法
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部