Topographic shielding of cosmic radiation flux is a key parameter in using cosmogenic nuclides to determine surface exposure ages or erosion rates. Traditionally, this parameter is measured in the field and uncertaint...Topographic shielding of cosmic radiation flux is a key parameter in using cosmogenic nuclides to determine surface exposure ages or erosion rates. Traditionally, this parameter is measured in the field and uncertainty and/or inconsistency may exist among different investigators. This paper provides an ArcGIS python code to determine topographic shielding factors using digital elevation models (DEMs). This code can be imported into ArcGIS as a geoprocessing tool with a user-friendly graphical interface. The DEM-derived parameters using this method were validated with field measurements in central Tian Shan. Results indicate that DEM-derived shielding factors are consistent with field-measured values. It provides a valuable tool to save fieldwork efforts and has the potential to provide consistent results for different regions in the world to facilitate the comparison of cosmogenie nuclide results.展开更多
A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-indu...A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-induced volume loss effects.The numerical model was verified based on the results of a centrifuge test and a set of parametric studies was implemented based on this model.There is good agreement between the trend of the results of the centrifuge test and the present model.The results of parametric studies show that the tunnelling-induced pile internal force and deformation depend mainly on the pile?tunnel distance,the pile length to tunnel depth ratio and the volume loss.Two different zones are separated by a 45° line projected from the tunnel springline.Within the zone of influence,the pile is subjected to tensile force and large settlement;whereas outside the zone of influence,dragload and small settlement are induced.It is also established that the impact of tunnelling on a pile group is substantially smaller as compared with a single pile in the same location with the rear pile in a group,demonstrating a positive pile group effect.展开更多
This paper describes a development of multilevel meteorological data acquisition system implemented at Kalpakkam coastal site for atmospheric dispersion and model validation studies. Meteorological data are one of the...This paper describes a development of multilevel meteorological data acquisition system implemented at Kalpakkam coastal site for atmospheric dispersion and model validation studies. Meteorological data are one of the most important inputs into any air dispersion model. As a part of atmospheric dispersion modeling studies and developing a methodology to forecast the site-specific dispersion characteristics, the real time monitoring of meteorological parameters assumes significance. This is achieved by erecting met towers instrumented at multilevel and single level at different locations with sensors for measuring various meteorological parameters. Real-world data logging applications involve not only just acquiring and recording signals, but also combination of offline analysis, display, report generation and data sharing. This paper covers development of low cost compact MMDAS (modular meteorological data acquisition system), its performance evaluation, field deployment test and data comparison analysis with fast response and high accuracy internationally acclaimed sonic anemometer. The system is based on embedded modules from Advantech and is designed to acquire analogue and digital signals from a multilevel instrumented met tower. The collected data are transferred from remote base station to central server for storage and further processing using wireless interface. MMDAS has many advantages like cost effectiveness, less complex signal conditioning electronics and easy maintenance. This system has good application during radiation emergency as well as site specific meteorological data collection and model validation studies.展开更多
In the field of the water resources, hydrologic models have been used to assess water quality performance of complex watersheds and river basins. Hydrologic models can provide essential information for making decision...In the field of the water resources, hydrologic models have been used to assess water quality performance of complex watersheds and river basins. Hydrologic models can provide essential information for making decisions on sustainable management system of water resources within watersheds. The main objective of this study was to validate the performance of the Soil and Water Assessment Tool (SWAT) and the feasibility of using this model as a simulator of runoff at a catchment scale in semi-arid area in Northwestern Tunisia. Calibration and validation of the model output were performed by comparing predicted runoff with corresponding measurements from the Sarrath outlet for the periods 1990-1995 for calibration and 2000-2005 for validation. The time series for the years 1996-1999 showed discrepancies between the measured rainfall and the observed runoff indicating errors due to either the observations or to a dysfunction in the equipments. Sensitivity analysis shows that sensitive parameters for the simulation of discharge include curve number, soil evaporation compensation factor, depth of water in shallow aquifer and slope of subbasin. Statistical comparisons between monthly simulated results and observed data for the calibration period gave a reasonable agreement with a coefficient of determination (R2) greater than 0.75 and Nash-Sutcliffe Coefficient (NSE) equal to 0.72. These values were respectively 0.70 and 0.64 for validation period. Overall, the SWAT model has the capability to predict runoff within a complex semi-arid catchment.展开更多
The aim of the present study was to develop and validate a new marker model for optoelectronic systems adapted to wearable devices, in order to have an analysis tool for kinematic gait evaluation of reproduced pattern...The aim of the present study was to develop and validate a new marker model for optoelectronic systems adapted to wearable devices, in order to have an analysis tool for kinematic gait evaluation of reproduced patterns by exoskeletons. The marker model has a total of 36 retro-reflective markers attached bilaterally to anatomical landmarks during the static measures (without exoskeleton) and 28 markers at the dynamics measures (with exoskeleton). The main difference between others kinematic models and the described adapted model was the placement of the three markers in the back thigh and the other three in the back calf, what allowed removing the hip, thigh, knee, tibia and ankle markers. The proposed adapted marker model could be an effective tool to validate the joint movement and velocities of those wearable exoskeletons that at present have been developing.展开更多
基金supported by the Professional Development Award of the University of Tennessee
文摘Topographic shielding of cosmic radiation flux is a key parameter in using cosmogenic nuclides to determine surface exposure ages or erosion rates. Traditionally, this parameter is measured in the field and uncertainty and/or inconsistency may exist among different investigators. This paper provides an ArcGIS python code to determine topographic shielding factors using digital elevation models (DEMs). This code can be imported into ArcGIS as a geoprocessing tool with a user-friendly graphical interface. The DEM-derived parameters using this method were validated with field measurements in central Tian Shan. Results indicate that DEM-derived shielding factors are consistent with field-measured values. It provides a valuable tool to save fieldwork efforts and has the potential to provide consistent results for different regions in the world to facilitate the comparison of cosmogenie nuclide results.
文摘A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-induced volume loss effects.The numerical model was verified based on the results of a centrifuge test and a set of parametric studies was implemented based on this model.There is good agreement between the trend of the results of the centrifuge test and the present model.The results of parametric studies show that the tunnelling-induced pile internal force and deformation depend mainly on the pile?tunnel distance,the pile length to tunnel depth ratio and the volume loss.Two different zones are separated by a 45° line projected from the tunnel springline.Within the zone of influence,the pile is subjected to tensile force and large settlement;whereas outside the zone of influence,dragload and small settlement are induced.It is also established that the impact of tunnelling on a pile group is substantially smaller as compared with a single pile in the same location with the rear pile in a group,demonstrating a positive pile group effect.
文摘This paper describes a development of multilevel meteorological data acquisition system implemented at Kalpakkam coastal site for atmospheric dispersion and model validation studies. Meteorological data are one of the most important inputs into any air dispersion model. As a part of atmospheric dispersion modeling studies and developing a methodology to forecast the site-specific dispersion characteristics, the real time monitoring of meteorological parameters assumes significance. This is achieved by erecting met towers instrumented at multilevel and single level at different locations with sensors for measuring various meteorological parameters. Real-world data logging applications involve not only just acquiring and recording signals, but also combination of offline analysis, display, report generation and data sharing. This paper covers development of low cost compact MMDAS (modular meteorological data acquisition system), its performance evaluation, field deployment test and data comparison analysis with fast response and high accuracy internationally acclaimed sonic anemometer. The system is based on embedded modules from Advantech and is designed to acquire analogue and digital signals from a multilevel instrumented met tower. The collected data are transferred from remote base station to central server for storage and further processing using wireless interface. MMDAS has many advantages like cost effectiveness, less complex signal conditioning electronics and easy maintenance. This system has good application during radiation emergency as well as site specific meteorological data collection and model validation studies.
文摘In the field of the water resources, hydrologic models have been used to assess water quality performance of complex watersheds and river basins. Hydrologic models can provide essential information for making decisions on sustainable management system of water resources within watersheds. The main objective of this study was to validate the performance of the Soil and Water Assessment Tool (SWAT) and the feasibility of using this model as a simulator of runoff at a catchment scale in semi-arid area in Northwestern Tunisia. Calibration and validation of the model output were performed by comparing predicted runoff with corresponding measurements from the Sarrath outlet for the periods 1990-1995 for calibration and 2000-2005 for validation. The time series for the years 1996-1999 showed discrepancies between the measured rainfall and the observed runoff indicating errors due to either the observations or to a dysfunction in the equipments. Sensitivity analysis shows that sensitive parameters for the simulation of discharge include curve number, soil evaporation compensation factor, depth of water in shallow aquifer and slope of subbasin. Statistical comparisons between monthly simulated results and observed data for the calibration period gave a reasonable agreement with a coefficient of determination (R2) greater than 0.75 and Nash-Sutcliffe Coefficient (NSE) equal to 0.72. These values were respectively 0.70 and 0.64 for validation period. Overall, the SWAT model has the capability to predict runoff within a complex semi-arid catchment.
文摘The aim of the present study was to develop and validate a new marker model for optoelectronic systems adapted to wearable devices, in order to have an analysis tool for kinematic gait evaluation of reproduced patterns by exoskeletons. The marker model has a total of 36 retro-reflective markers attached bilaterally to anatomical landmarks during the static measures (without exoskeleton) and 28 markers at the dynamics measures (with exoskeleton). The main difference between others kinematic models and the described adapted model was the placement of the three markers in the back thigh and the other three in the back calf, what allowed removing the hip, thigh, knee, tibia and ankle markers. The proposed adapted marker model could be an effective tool to validate the joint movement and velocities of those wearable exoskeletons that at present have been developing.