For measurement of component content in the extraction and separation process of praseodymium/neodymium(Pr/Nd), a soft measurement method was proposed based on modeling of ion color features, which is suitable for fas...For measurement of component content in the extraction and separation process of praseodymium/neodymium(Pr/Nd), a soft measurement method was proposed based on modeling of ion color features, which is suitable for fast estimation of component content in production field. Feature analysis on images of the solution is conducted,which are captured from Pr/Nd extraction/separation field. H/S components in the HSI color space are selected as model inputs, so as to establish the least squares support vector machine(LSSVM) model for Nd(Pr) content,while the model parameters are determined with the GA algorithm. To improve the adaptability of the model,the adaptive iteration algorithm is used to correct parameters of the LSSVM model, on the basis of model correction strategy and new sample data. Using the field data collected from rare earth extraction production, predictive methods for component content and comparisons are given. The results indicate that the proposed method presents good adaptability and high prediction precision, so it is applicable to the fast detection of element content in the rare earth extraction.展开更多
In this paper, new solutions for the problem of pose estimation from correspondences between 3D model lines and 2D image lines are proposed. Traditional line-based pose estimation methods rely on the assumption that t...In this paper, new solutions for the problem of pose estimation from correspondences between 3D model lines and 2D image lines are proposed. Traditional line-based pose estimation methods rely on the assumption that the noises(perpendicular to the line) for the two endpoints are statistically independent. However, these two noises are in fact negatively correlated when the image line segment is fitted using the least-squares technique. Therefore, we design a new error function expressed by the average integral of the distance between line segments. Three least-squares techniques that optimize both the rotation and translation simultaneously are proposed in which the new error function is exploited. In addition, Lie group formalism is utilized to describe the pose parameters, and then, the optimization problem can be solved by means of a simple iterative least squares method. To enhance the robustness to outliers existing in the match data, an M-estimation method is developed to convert the pose optimization problem into an iterative reweighted least squares problem. The proposed methods are validated through experiments using both synthetic and real-world data. The experimental results show that the proposed methods yield a clearly higher precision than the traditional methods.展开更多
基金Supported by the National Natural Science Foundation of China(51174091,61364013,61164013)Earlier Research Project of the State Key Development Program for Basic Research of China(2014CB360502)
文摘For measurement of component content in the extraction and separation process of praseodymium/neodymium(Pr/Nd), a soft measurement method was proposed based on modeling of ion color features, which is suitable for fast estimation of component content in production field. Feature analysis on images of the solution is conducted,which are captured from Pr/Nd extraction/separation field. H/S components in the HSI color space are selected as model inputs, so as to establish the least squares support vector machine(LSSVM) model for Nd(Pr) content,while the model parameters are determined with the GA algorithm. To improve the adaptability of the model,the adaptive iteration algorithm is used to correct parameters of the LSSVM model, on the basis of model correction strategy and new sample data. Using the field data collected from rare earth extraction production, predictive methods for component content and comparisons are given. The results indicate that the proposed method presents good adaptability and high prediction precision, so it is applicable to the fast detection of element content in the rare earth extraction.
基金supported by the National Basic Research Program of China(“973”Project)(Grant No.2013CB733100)National Natural Science Foundation of China(Grant No.11332012)
文摘In this paper, new solutions for the problem of pose estimation from correspondences between 3D model lines and 2D image lines are proposed. Traditional line-based pose estimation methods rely on the assumption that the noises(perpendicular to the line) for the two endpoints are statistically independent. However, these two noises are in fact negatively correlated when the image line segment is fitted using the least-squares technique. Therefore, we design a new error function expressed by the average integral of the distance between line segments. Three least-squares techniques that optimize both the rotation and translation simultaneously are proposed in which the new error function is exploited. In addition, Lie group formalism is utilized to describe the pose parameters, and then, the optimization problem can be solved by means of a simple iterative least squares method. To enhance the robustness to outliers existing in the match data, an M-estimation method is developed to convert the pose optimization problem into an iterative reweighted least squares problem. The proposed methods are validated through experiments using both synthetic and real-world data. The experimental results show that the proposed methods yield a clearly higher precision than the traditional methods.