The effects of adipose-derived mesenchymal stem cell (ADMSC) transplantation for the repair of traumatic brain injury remain poorly understood. The present study observed neurological functional changes in a rat model...The effects of adipose-derived mesenchymal stem cell (ADMSC) transplantation for the repair of traumatic brain injury remain poorly understood. The present study observed neurological functional changes in a rat model of traumatic brain injury following ADMSC transplantation via the tail vein. Cell transplants were observed in injured cerebral cortex, and expression of brain-derived nerve growth factor was significantly increased in the injured hippocampus following transplantation. Results demonstrated that transvenous ADMSC transplants migrated to the injured cerebral cortex and significantly improved cognitive function.展开更多
Objective:To label rat bone marrow mesenchymal stem cells (BMSCs) with superparamagnetic iron oxide (SPIO) in vitro, and to monitor the survival and location of these labeled BMSCs in a rat model of traumatic bra...Objective:To label rat bone marrow mesenchymal stem cells (BMSCs) with superparamagnetic iron oxide (SPIO) in vitro, and to monitor the survival and location of these labeled BMSCs in a rat model of traumatic brain injury (TBI) by susceptibility weighted imaging (SWI)sequence.Methods:BMSCs were cultured in vitro and then labeled with SPIO. Totally 24 male Sprague Dawley (SD) rats weighing 200-250 g were randomly divided into 4 groups: Groups A-D (n=6 for each group). Moderate TBI models of all the rats were developed in the left hemisphere following Feeney's method. Group A was the experimental group and stereotaxic transplantation of BMSCs labeled with SPIO into the region nearby the contusion was conducted in this group 24 hours after TBI modeling. The other three groups were control groups with transplantation of SPIO, unlabeled BMSCs and injection of nutrient solution respectively conducted in Groups B, C and D at the same time. Monitoring of these SPIO-labeled BMSCs by SWI was performed one day,one week and three weeks after implantation.Results: Numerous BMSCs were successfully labeled with SPIO. They were positive for Prussian blue staining and intracytoplasm positive blue stained particles were found under a microscope (×200). Scattered little iron particles were observed in the vesicles by electron microscopy (×5000). MRI of the transplantation sites of the left hemisphere demonstrated a low signal intensity on magnitude images,phase images and SWI images for all the test rats in Group A, and the lesion in the left parietal cortex demonstrated a semicircular low intensity on SWI images, which clearly showed the distribution and migration of BMSCs in the first and third weeks. For Group B, a low signal intensity by MRI was only observed on the first day but undetected during the following examination. No signals were observed in Groups C and D at any time points.Conclusion:SWI sequence in vivo can consecutively and noninvasively trace and demonstrate the status and distribution of BMSCs labeled with SPIO in the brain of TBI model rats.展开更多
Objective: To observe serum and callus leptin expression within the setting of fracture and traumatic brain injury (TBI).Methods: Atotal of 64 male SD rats were randomized equally into 4 groups: nonoperated group...Objective: To observe serum and callus leptin expression within the setting of fracture and traumatic brain injury (TBI).Methods: Atotal of 64 male SD rats were randomized equally into 4 groups: nonoperated group, TBI group, fraeture group, and fracture+TBI group. Rats were sacrificed at 2, 4, 8 and 12 weeks after fracture+TBI. Serum leptin was detected using radioimmunoassay, and callus formation was measured radiologically. Callus leptin was analyzed by immunohistochemistry.Results: Serum ieptin levels in the fracture group, TBI group and combined fracture+TBI group were all significantly increased compared with control group at the 2 week time-point (P〈0.05). Serum leptin in the combined fracture +TBI group was significantly higher than that in the fracture and TBI groups at 4 and 8 weeks after injury (P〈0. 05).The percentage of leptin-positive cells in the fracture+TBI callus and callus volume were significantly higher than those in the fracture-only group (P〈0.01).Conclusions: We demonstrated elevated leptin expression within healing bone especially in the first 8 weeks in a rat model of fracture and TBI. A close association exists between leptin levels and the degree of callus formation in fractures.展开更多
基金the National Basic Research Program of China(973Program),No.2007CB512705the General Program for Youths of the National Natural Science Foundation of China,No.30801464
文摘The effects of adipose-derived mesenchymal stem cell (ADMSC) transplantation for the repair of traumatic brain injury remain poorly understood. The present study observed neurological functional changes in a rat model of traumatic brain injury following ADMSC transplantation via the tail vein. Cell transplants were observed in injured cerebral cortex, and expression of brain-derived nerve growth factor was significantly increased in the injured hippocampus following transplantation. Results demonstrated that transvenous ADMSC transplants migrated to the injured cerebral cortex and significantly improved cognitive function.
文摘Objective:To label rat bone marrow mesenchymal stem cells (BMSCs) with superparamagnetic iron oxide (SPIO) in vitro, and to monitor the survival and location of these labeled BMSCs in a rat model of traumatic brain injury (TBI) by susceptibility weighted imaging (SWI)sequence.Methods:BMSCs were cultured in vitro and then labeled with SPIO. Totally 24 male Sprague Dawley (SD) rats weighing 200-250 g were randomly divided into 4 groups: Groups A-D (n=6 for each group). Moderate TBI models of all the rats were developed in the left hemisphere following Feeney's method. Group A was the experimental group and stereotaxic transplantation of BMSCs labeled with SPIO into the region nearby the contusion was conducted in this group 24 hours after TBI modeling. The other three groups were control groups with transplantation of SPIO, unlabeled BMSCs and injection of nutrient solution respectively conducted in Groups B, C and D at the same time. Monitoring of these SPIO-labeled BMSCs by SWI was performed one day,one week and three weeks after implantation.Results: Numerous BMSCs were successfully labeled with SPIO. They were positive for Prussian blue staining and intracytoplasm positive blue stained particles were found under a microscope (×200). Scattered little iron particles were observed in the vesicles by electron microscopy (×5000). MRI of the transplantation sites of the left hemisphere demonstrated a low signal intensity on magnitude images,phase images and SWI images for all the test rats in Group A, and the lesion in the left parietal cortex demonstrated a semicircular low intensity on SWI images, which clearly showed the distribution and migration of BMSCs in the first and third weeks. For Group B, a low signal intensity by MRI was only observed on the first day but undetected during the following examination. No signals were observed in Groups C and D at any time points.Conclusion:SWI sequence in vivo can consecutively and noninvasively trace and demonstrate the status and distribution of BMSCs labeled with SPIO in the brain of TBI model rats.
文摘Objective: To observe serum and callus leptin expression within the setting of fracture and traumatic brain injury (TBI).Methods: Atotal of 64 male SD rats were randomized equally into 4 groups: nonoperated group, TBI group, fraeture group, and fracture+TBI group. Rats were sacrificed at 2, 4, 8 and 12 weeks after fracture+TBI. Serum leptin was detected using radioimmunoassay, and callus formation was measured radiologically. Callus leptin was analyzed by immunohistochemistry.Results: Serum ieptin levels in the fracture group, TBI group and combined fracture+TBI group were all significantly increased compared with control group at the 2 week time-point (P〈0.05). Serum leptin in the combined fracture +TBI group was significantly higher than that in the fracture and TBI groups at 4 and 8 weeks after injury (P〈0. 05).The percentage of leptin-positive cells in the fracture+TBI callus and callus volume were significantly higher than those in the fracture-only group (P〈0.01).Conclusions: We demonstrated elevated leptin expression within healing bone especially in the first 8 weeks in a rat model of fracture and TBI. A close association exists between leptin levels and the degree of callus formation in fractures.