期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
局部保持多投影向量Fisher判别分析算法 被引量:2
1
作者 张召 业宁 业巧林 《计算机学报》 EI CSCD 北大核心 2010年第5期865-876,共12页
特征选择是在损失较少信息的情况下处理高维图像数据的关键技术,是高维数据预处理的重要步骤.通过引入Fisher判别分析(Fisher Discriminant Analysis,FDA)和典型相关分析(Canonical Correlation Analysis,CCA)的思想,采用以样本的类标... 特征选择是在损失较少信息的情况下处理高维图像数据的关键技术,是高维数据预处理的重要步骤.通过引入Fisher判别分析(Fisher Discriminant Analysis,FDA)和典型相关分析(Canonical Correlation Analysis,CCA)的思想,采用以样本的类标号形式给出的先验信息,考虑样本数据的局部性,提出了一种监督的基于Fisher判别信息的局部保持多投影向量分析方法(Locality Preserving Multi-projection Vector Fisher Discriminant Analysis,LPMVF).通过定义新准则,LPMVF具有以下优点:(1)便于计算,可有效避免奇异性;(2)借助标准核映射,可快速将LPMVF推广到非线性的特征空间;(3)与CCA算法类似,LPMVF最终得到一对投影变换,可有效嵌入样本数据,可将原始数据投影成一系列"有用的"特征形式,并使数据的投影在嵌入空间中更具可分离性;(4)与局部化的Fisher判别分析(Local Fisher Discriminant Analysis,简称LFDA)相比,LPMVF也能够有效保持数据样本间的局部近邻关系;(5)在大多数情况下,该文算法的学习能力甚至优于经典的FDA、KFD和LFDA算法.在几个标准数据集上的实验结果表明,LPMVF及其非线性的推广算法能够提取出描述能力更强的特征信息,可有效利用类标号监督信息提高分类性能. 展开更多
关键词 局部保持 投影向量 特征选择 分类 判别分析
在线阅读 下载PDF
基于无参数二维判别局部保持投影算法的人脸识别 被引量:2
2
作者 龚劬 王珂 +1 位作者 冉清华 谷雅宁 《计算机工程与应用》 CSCD 北大核心 2016年第10期151-156,共6页
通过向二维局部保持投影(2D-LPP)算法中引入类间约束和类标识信息,得到二维判别局部保持投影(2D-DLPP)算法,使它拥有更多的判别信息。但它却面临复杂的参数选择问题,这使得它在解决识别问题时受到限制。为解决此问题,构造无参数的相似矩... 通过向二维局部保持投影(2D-LPP)算法中引入类间约束和类标识信息,得到二维判别局部保持投影(2D-DLPP)算法,使它拥有更多的判别信息。但它却面临复杂的参数选择问题,这使得它在解决识别问题时受到限制。为解决此问题,构造无参数的相似矩阵,提出无参数的二维判别局部投影(无参数2D-DLPP)算法。在Yale和ORL人脸库上的仿真实验结果表明,该算法与二维判别局部保持投影(2D-DLPP)、二维局部保持投影法(2D-LPP)和二维线性判别分析法(2D-LDA)相比能够取得更高的识别率。 展开更多
关键词 人脸识别 特征提取 二维判别局部保持投影 无参数
在线阅读 下载PDF
基于奇异值分解和判别局部保持投影的多变量时间序列分类 被引量:4
3
作者 董红玉 陈晓云 《计算机应用》 CSCD 北大核心 2014年第1期239-243,共5页
针对现有多变量时间序列分类算法存在的要求序列等长和忽视类别信息两个不足,提出基于奇异值分解(SVD)和判别局部保持投影的分类算法。该算法基于降维思想,先通过SVD将样本的第一右奇异向量作为特征向量,以此将不等长序列转化为规模大... 针对现有多变量时间序列分类算法存在的要求序列等长和忽视类别信息两个不足,提出基于奇异值分解(SVD)和判别局部保持投影的分类算法。该算法基于降维思想,先通过SVD将样本的第一右奇异向量作为特征向量,以此将不等长序列转化为规模大小相同的序列;接着采用基于最大间距准则的判别局部保持投影对特征向量投影,充分利用类别信息以确保投影后同类样本尽量接近,异类样本尽量分散;最后在低维子空间采用1最近邻(1NN)、Parzen窗、支持向量机(SVM)和朴素Bayes分类器进行分类。在Australian Sign Language(ASL)、Japanese Vowels(JV)和Wafer三个公开的多变量时间序列数据集上进行的实验结果表明:在时间开销基本不变的前提下,所提方法取得了较低的分类错误率。 展开更多
关键词 多变量时间序列 分类 奇异值分解 判别局部保持投影 最大间距准则
在线阅读 下载PDF
基于图像矩阵判别局部保持投影的人脸识别 被引量:1
4
作者 王国强 石念峰 欧宗瑛 《计算机工程与应用》 CSCD 北大核心 2010年第16期191-196,共6页
提出一种基于图像矩阵判别局部保持投影的人脸识别方法。图像矩阵判别局部保持投影是在局部保持投影基础上进行了扩展,考虑了类标签信息并在其目标函数中增加类间散度约束,使得求解的特征更具判别性。另外,图像矩阵判别局部保持投影是... 提出一种基于图像矩阵判别局部保持投影的人脸识别方法。图像矩阵判别局部保持投影是在局部保持投影基础上进行了扩展,考虑了类标签信息并在其目标函数中增加类间散度约束,使得求解的特征更具判别性。另外,图像矩阵判别局部保持投影是直接处理图像矩阵而不需要将矩阵转化为向量,保留了像素间的空间位置关系,避免了奇异性问题。实验结果表明该方法是有效的。 展开更多
关键词 局部保持投影 图像矩阵判别局部保持投影 流形学习 人脸识别
在线阅读 下载PDF
正则化最小二乘的正交局部保持判别投影的人脸识别
5
作者 李勇周 罗大庸 《小型微型计算机系统》 CSCD 北大核心 2009年第9期1847-1850,共4页
提出一种新的子空间学习方法:正则化最小二乘的正交局部保持判别投影.为了更好地保持数据流形的结构,融合局部保持投影和线性判别分析的特点,对类内和类间加权矩阵分别进行了定义,从而构造目标函数.首先使用特征分解求出训练样本在人脸... 提出一种新的子空间学习方法:正则化最小二乘的正交局部保持判别投影.为了更好地保持数据流形的结构,融合局部保持投影和线性判别分析的特点,对类内和类间加权矩阵分别进行了定义,从而构造目标函数.首先使用特征分解求出训练样本在人脸子空间的投影,然后使用最小二乘法解出投影子空间,最后将子空间的基向量正交化.在标准人脸数据库上的试验证明了这种识别方法的正确和有效. 展开更多
关键词 人脸识别 正则化最小二乘 正交局部保持判别投影
在线阅读 下载PDF
一种基于协作表示的判别局部保持投影方法
6
作者 李实秋 《计算机与现代化》 2023年第6期43-47,共5页
判别局部保持投影(DLPP)算法是一种判别特征提取的方法,用于流形学习的典型降维算法,它能够利用判别信息,提取出最佳的判别特征,但是DLPP算法往往会忽略样本间的协作重构关系,从而导致算法识别率较低的问题。本文提出一种基于协作表示... 判别局部保持投影(DLPP)算法是一种判别特征提取的方法,用于流形学习的典型降维算法,它能够利用判别信息,提取出最佳的判别特征,但是DLPP算法往往会忽略样本间的协作重构关系,从而导致算法识别率较低的问题。本文提出一种基于协作表示的判别局部保持投影(CRDLPP)方法。该方法首先利用协作表示方法对所有训练样本的协作重构误差进行计算,然后将该重构误差值作为正则项引入DLPP的目标函数中,最后通过求解新的目标优化问题得到最优投影矩阵。为了验证CRDLPP算法在图像识别方面的有效性,选取Yale人脸库和COIL20图像库进行算法仿真实验,结果表明,本文的CRDLPP算法在图像识别方面相比其他经典降维算法有着较高的识别率。 展开更多
关键词 判别局部保持投影 协作表示 协作重构误差 图像识别
在线阅读 下载PDF
基于极小准则的完备正交判别局部保持算法 被引量:1
7
作者 林玉娥 李敬兆 +1 位作者 梁兴柱 林玉荣 《光电工程》 CAS CSCD 北大核心 2011年第3期145-150,共6页
以无监督判别投影算法为理论基础,提出了一种基于极小准则的完备正交判别局部保持投影算法。算法首先根据同类样本的空间信息重新定义了类内局部保持散度矩阵与类间局部保持散度矩阵,然后借鉴无监督判别投影算法的目标函数,推导出一个... 以无监督判别投影算法为理论基础,提出了一种基于极小准则的完备正交判别局部保持投影算法。算法首先根据同类样本的空间信息重新定义了类内局部保持散度矩阵与类间局部保持散度矩阵,然后借鉴无监督判别投影算法的目标函数,推导出一个基于极小准则的目标函数,该目标函数通过投影到总体散度矩阵的非零空间中有效地解决小样本问题,最后给出了该算法基于QR分解的正交投影矩阵的求解方法。人脸库上的实验结果表明了所提方法的有效性。 展开更多
关键词 完备正交判别局部保持投影算法 散度矩阵 无监督判别投影算法 目标函数 非零空间
在线阅读 下载PDF
半监督局部判别分析 被引量:4
8
作者 姜伟 杨炳儒 《计算机工程》 CAS CSCD 北大核心 2011年第8期153-154,157,共3页
针对无监督学习及有监督学习算法的缺点,提出一种半监督局部判别分析的线性降维算法。数据在没有足够的训练样本时,局部结构比全局结构更重要。算法在每一个局部区域利用有标签数据推导出数据的局部判别结构,无标签数据和有标签数据推... 针对无监督学习及有监督学习算法的缺点,提出一种半监督局部判别分析的线性降维算法。数据在没有足够的训练样本时,局部结构比全局结构更重要。算法在每一个局部区域利用有标签数据推导出数据的局部判别结构,无标签数据和有标签数据推导出数据的内在几何结构。在ORL和Yale人脸数据库上的实验结果表明该算法是有效的。 展开更多
关键词 判别结构 半监督 局部保持投影 局部判别分析
在线阅读 下载PDF
一种基于局部和判别特性的降维算法 被引量:1
9
作者 张国印 楼宋江 +1 位作者 王庆军 程慧杰 《计算机应用研究》 CSCD 北大核心 2009年第9期3324-3325,3329,共3页
提出了一种基于LPP和LDA的降维算法。该算法不仅考虑了LPP能保持局部邻近关系属性,还考虑了LDA能使降维后的数据更易于分类属性,并且该算法是线性的,很容易将新样本映射到目标空间。在人脸识别中的实验验证了算法的正确性和有效性。
关键词 维数约简 局部保持投影 线性判别分析 人脸识别
在线阅读 下载PDF
基于零空间分析的张量局部Fisher判别方法
10
作者 郑建炜 蒋一波 王万良 《计算机科学》 CSCD 北大核心 2013年第5期11-18,37,共9页
结合局部Fisher判别、张量子空间学习和零空间分析等技术的优点,提出了一种基于零空间分析的张量局部Fisher判别算法,其特点包括:i)引入类间判别信息,对局部Fisher判别技术进行调整,提升了算法识别性能并且降低了计算时间复杂度;ii)通... 结合局部Fisher判别、张量子空间学习和零空间分析等技术的优点,提出了一种基于零空间分析的张量局部Fisher判别算法,其特点包括:i)引入类间判别信息,对局部Fisher判别技术进行调整,提升了算法识别性能并且降低了计算时间复杂度;ii)通过张量型降维思想对输入样本进行双边投影变换而非单边投影,获得了更高的信息压缩率;iii)随着训练样本量的变化,可采用基于零空间分析的求解方法和传统的直接迭代更新计算方法。通过ORL、Yale和ExYaleB 3个人脸数据库验证了所提算法的性能。 展开更多
关键词 FISHER判别分析 零空间 局部保持投影 张量子空间分析
在线阅读 下载PDF
面向酉子空间的二维判别保局投影的人脸识别 被引量:1
11
作者 曹孝斌 廖海斌 李原 《计算机应用研究》 CSCD 北大核心 2011年第9期3569-3571,3575,共4页
保局投影算法(LPP)在人脸识别中具有较好的识别性能,但它是一种非监督学习,并且在具体实现时需要把图像转换为向量,破坏了图像的像素结构,这显然不利于模式识别。针对这些问题,提出基于酉子空间的二维判别保局算法,不仅在判别保局算法... 保局投影算法(LPP)在人脸识别中具有较好的识别性能,但它是一种非监督学习,并且在具体实现时需要把图像转换为向量,破坏了图像的像素结构,这显然不利于模式识别。针对这些问题,提出基于酉子空间的二维判别保局算法,不仅在判别保局算法的基础上增加了类别信息,而且直接在灰度矩阵上进行水平和垂直方向上的二维保局投影。该方法构造酉空间上的复向量后再运用线性判别分析提取特征。在ORL、Yale和XJTU人脸库中验证了算法的正确性和有效性,其识别率比传统的2DLDA和2DLPP等方法提高4~5个百分点。 展开更多
关键词 人脸识别 局部保持投影 二维判别保局投影 酉子空间
在线阅读 下载PDF
邻域保持判别非负矩阵分解 被引量:3
12
作者 王亚芳 《计算机工程与应用》 CSCD 北大核心 2010年第28期163-166,共4页
非负矩阵分解(NMF)是一种新的矩阵分解技术,为了提高NMF算法的识别率,提出了一种新的方法——邻域保持判别非负矩阵分解(NPDNMF),该方法通过将邻域保持判别分析(NPDA)与NMF相结合来实现。邻域保持判别分析是一个将线性判别分析(LDA)与... 非负矩阵分解(NMF)是一种新的矩阵分解技术,为了提高NMF算法的识别率,提出了一种新的方法——邻域保持判别非负矩阵分解(NPDNMF),该方法通过将邻域保持判别分析(NPDA)与NMF相结合来实现。邻域保持判别分析是一个将线性判别分析(LDA)与局部保持投影(LPP)综合考虑的判别分析方法,该算法既保持了LDA的判别能力,同时又可以保持原始数据的几何结构。通过将NPDA与NMF相结合,提取得到局部化同时又有很强判别能力的基图像。在ORL人脸数据库上进行人脸识别实验,结果表明该方法得到较好的识别效果。 展开更多
关键词 线性判别分析 邻域保持判别分析 局部保持投影 非负矩阵分解
在线阅读 下载PDF
基于局部保持投影和核直接判别分析的掌纹识别 被引量:6
13
作者 郭金玉 李元 +1 位作者 孔晓光 曾静 《光电子.激光》 EI CAS CSCD 北大核心 2011年第1期127-130,共4页
为了提高识别性能,提出运用局部保持投影(LPP)和核直接判别分析(KDDA)相结合的方法进行掌纹识别。在小样本图像识别中,为了解决特征方程矩阵的奇异性,首先运用图像下抽样降低掌纹空间的维数,然后应用LPP提取掌纹局部结构特征作为KDDA的... 为了提高识别性能,提出运用局部保持投影(LPP)和核直接判别分析(KDDA)相结合的方法进行掌纹识别。在小样本图像识别中,为了解决特征方程矩阵的奇异性,首先运用图像下抽样降低掌纹空间的维数,然后应用LPP提取掌纹局部结构特征作为KDDA的输入提取分类特征,计算特征向量间的余弦距离进行掌纹匹配。运用PolyU掌纹图像库,对本文算法进行测试。实验结果表明,与主元分析(PCA)、独立元分析(ICA)、PCA+LPP、核局部保持投影(KLPP)、核判别分析(KDA)和抽样(sample)+LPP相比,本文算法的识别率(RR)最高为99.71%,特征提取和匹配总时间为0.131 s,满足实时系统的要求。 展开更多
关键词 图像处理 掌纹识别 下抽样 局部保持投影(LPP) 核直接判别分析(KDDA)
原文传递
一种结合2DLPP与2DPCA的人脸识别方法 被引量:8
14
作者 齐永锋 火元莲 《西南交通大学学报》 EI CSCD 北大核心 2011年第6期910-916,共7页
为解决二维局部保持投影(2DLPP)需要较多数据表示人脸特征的缺陷,提出了一种新的二维局部保持投影主成分分析方法(2DLPP-PCA).通过对人脸图像在行、列方向同时进行2DLPP和2DPCA投影,2DLPP-PCA不仅能减少保存人脸特征所需要的数据量,而... 为解决二维局部保持投影(2DLPP)需要较多数据表示人脸特征的缺陷,提出了一种新的二维局部保持投影主成分分析方法(2DLPP-PCA).通过对人脸图像在行、列方向同时进行2DLPP和2DPCA投影,2DLPP-PCA不仅能减少保存人脸特征所需要的数据量,而且能有效地提取人脸的局部特征和全局特征.在ORL、Yale和CAS-PEAL-R1人脸数据库上的实验结果表明,2DLPP-PCA是一种高性能的特征提取方法,当训练样本数为6时,2DLPP-PCA在ORL数据库上的最佳平均识别率达到99%以上. 展开更多
关键词 二维局部保持投影(2dlpp) 二维主成分分析(2DPCA) 特征提取 人脸识别
在线阅读 下载PDF
基于谱回归判别分析的LPP算法 被引量:2
15
作者 杨凡 张银玲 牛静 《微型机与应用》 2012年第16期38-41,共4页
判别局部保持投影DLPP算法在计算过程中需要解决稠密矩阵特征分解问题,这使得该算法在时间和内存上消耗都非常高。谱回归判别分析SRDA算法可以有效的节省时间和内存的消耗。基于SRDA,提出一种改进的局部保持投影LPP算法——谱回归判别... 判别局部保持投影DLPP算法在计算过程中需要解决稠密矩阵特征分解问题,这使得该算法在时间和内存上消耗都非常高。谱回归判别分析SRDA算法可以有效的节省时间和内存的消耗。基于SRDA,提出一种改进的局部保持投影LPP算法——谱回归判别局部保持投影算法SRDLPP。实验结果表明,该算法可以提高识别率,同时降低时间和内存消耗。 展开更多
关键词 判别局部保持投影 局部保持投影算法 谱回归判别分析 人脸识别
在线阅读 下载PDF
一种新的保类内核Fisher判别法及说话人辨别应用 被引量:1
16
作者 郑建炜 王万良 《计算机科学》 CSCD 北大核心 2010年第7期243-247,共5页
在保留数据本质特征的前提下,降低数据维度是一种重要的分类预处理手段。深入分析了核Fisher判别(KFD)方法与核化全局局部保持Fisher投影(KLFDA)方法的相互关系与优缺点,提出了一种新的基于类内特性保持的核化Fisher判别分析方法(LW-KFD... 在保留数据本质特征的前提下,降低数据维度是一种重要的分类预处理手段。深入分析了核Fisher判别(KFD)方法与核化全局局部保持Fisher投影(KLFDA)方法的相互关系与优缺点,提出了一种新的基于类内特性保持的核化Fisher判别分析方法(LW-KFD)。在保留KFD全局最优投影能力的同时,解决了KLFDA的过度局部保持问题,从而对重叠(离群)样本与多态分簇样本都能实现有效的分类投影。提出了快速训练算法,解决了大量训练样本时的内存溢出问题。仿真实验与说话人辨别应用表明,该方法具有很强的适应性,并提高了说话人识别率与识别速度。 展开更多
关键词 FISHER判别分析 局部保持投影 说话人辨别 核技巧 维度削减
在线阅读 下载PDF
一种双向2DLPP算法及其在人脸识别中的应用 被引量:1
17
作者 靳丽丽 陈秀宏 《计算机工程与科学》 CSCD 北大核心 2010年第9期50-52,64,共4页
为了提高人脸识别方法对光照、姿态等外部因素的鲁棒性,本文在二维局部保持投影(2DLPP)算法的基础上进行改进,提出的一种双向2DLPP算法。与2DLPP算法不同的是,在求得行方向投影矩阵后,再求列方向的投影矩阵,得到图像的双向特征矩阵,以... 为了提高人脸识别方法对光照、姿态等外部因素的鲁棒性,本文在二维局部保持投影(2DLPP)算法的基础上进行改进,提出的一种双向2DLPP算法。与2DLPP算法不同的是,在求得行方向投影矩阵后,再求列方向的投影矩阵,得到图像的双向特征矩阵,以达到将样本降维的目的。实验结果表明,该方法具有较高的识别率对光照和姿态的变化具有一定的鲁棒性。 展开更多
关键词 人脸识别 子空间 双向二维局部保持投影 线性判别分析
在线阅读 下载PDF
基于判别局部保持投影的苹果叶部病害识别方法 被引量:5
18
作者 邵彧 张善文 李萍 《东北农业科学》 2021年第4期113-118,134,共7页
通过维数约简实现特征提取是图像识别的一个重要步骤。由于同一种作物病害叶片和病斑图像的高度复杂性,在各种不同拍摄角度、位置和光照等条件下得到的图像之间差异较大,使得很多经典的维数约简和特征提取算法不能有效地用于作物叶部病... 通过维数约简实现特征提取是图像识别的一个重要步骤。由于同一种作物病害叶片和病斑图像的高度复杂性,在各种不同拍摄角度、位置和光照等条件下得到的图像之间差异较大,使得很多经典的维数约简和特征提取算法不能有效地用于作物叶部病害识别。本文在判别局部保持投影(Discriminant Locality Preserving Projections,DLPP)的基础上,提出一种基于DLPP的苹果叶部病害识别方法。首先利用GrabCut算法对采集的病害叶部图像进行背景分割,然后利用分水岭算法对去背景图像进行分割,得到病斑图像;再利用DLPP将病斑图像投影到低维判别空间,得到分类特征;最后利用K-最近邻分类器进行病害类别识别。在实际苹果病害叶片图像数据库上的实验结果表明,该方法是有效可行的。 展开更多
关键词 苹果病害叶片图像 病害识别 判别局部保持投影(dlpp) 维数约简
原文传递
多流形判别分析在人脸识别中的研究
19
作者 万康康 马龙 周煜坤 《计算机应用与软件》 CSCD 北大核心 2014年第10期189-191,196,共4页
局部保持投影LPP(Locality Preserving Projection)是一种有效的非线性降维方法,能够使投影降维后的数据与原输入空间中的相似局部结构保持一致,但是该方法没有充分利用类间样本点的权重等重要信息。为了解决这个问题,提出基于Fisher准... 局部保持投影LPP(Locality Preserving Projection)是一种有效的非线性降维方法,能够使投影降维后的数据与原输入空间中的相似局部结构保持一致,但是该方法没有充分利用类间样本点的权重等重要信息。为了解决这个问题,提出基于Fisher准则的多流形判别分析FMMDA(Fisher Multi-Manifold Discriminant Analysis)方法。结合Fisher准则训练样本类内拉普拉斯图和样本均值类间拉普拉斯图,既保持了原样本的相似局部结构,又充分地利用了不同类别之间的权重。在ORL及Yale人脸库上验证了该方法的有效性。与其他几种最先进的方法相比,FMMDA方法取得了更好的识别效果。 展开更多
关键词 人脸识别 特征提取 局部保持投影 FISHER准则 多流形判别分析
在线阅读 下载PDF
一种改进的多流形判别分析方法在特征提取中的应用
20
作者 张玉娇 《计算机应用与软件》 CSCD 2015年第9期175-180,共6页
传统的多流形判别分析(MMDA)方法要求每类样本数目必须相同,这在实际中往往很难满足,因此限制了它的应用。针对此问题,提出一种改进的多流形判别分析(IMMDA)方法。该方法去除了MMDA中的限制条件,用类内图和类间图来描述类内紧凑度和类... 传统的多流形判别分析(MMDA)方法要求每类样本数目必须相同,这在实际中往往很难满足,因此限制了它的应用。针对此问题,提出一种改进的多流形判别分析(IMMDA)方法。该方法去除了MMDA中的限制条件,用类内图和类间图来描述类内紧凑度和类间离散度,类内图可以代表子流形信息,类间图可以代表多流形信息,从而更好地实现分类。在FERET、ORL人脸库及UCI数据集上的实验证明了该方法的有效性。相比其他几种子空间学习方法,该方法取得了更好的识别效果。 展开更多
关键词 多流形学习 线性判别分析 局部保持投影 特征提取
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部