Hard carbons(HCs)are recognized as potential anode materials for sodium-ion batteries(SIBs)because of their low cost,environmental friendliness,and the abundance of their precursors.The presence of graphitic domains,n...Hard carbons(HCs)are recognized as potential anode materials for sodium-ion batteries(SIBs)because of their low cost,environmental friendliness,and the abundance of their precursors.The presence of graphitic domains,numerous pores,and disordered carbon layers in HCs plays a significant role in determining their sodium storage ability,but these structural features depend on the precursor used.The influence of functional groups,including heteroatoms and oxygen-containing groups,and the microstructure of the precursor on the physical and electrochemical properties of the HC produced are evaluated,and the effects of carbonization conditions(carbonization temperature,heating rate and atmosphere)are also discussed.展开更多
A monolithic integrated CMOS preamplifier is presented for neural recording applications. Two AC-coupied capacitors are used to eliminate the large and random DC offsets existing in the electrode-electrolyte interface...A monolithic integrated CMOS preamplifier is presented for neural recording applications. Two AC-coupied capacitors are used to eliminate the large and random DC offsets existing in the electrode-electrolyte interface. Diode-connected nMOS transistors with a negative voltage between the gate and source are candidates for the large resistors necessary for the preamplifier. A novel analysis is given to determine the noise power spectral density. Simulation results show that the two-stage CMOS preamplifier in a closed-loop capacitive feedback configuration provides an AC in-band gain of 38.8dB,a DC gain of 0,and an input-referred noise of 277nVmax, integrated from 0. 1Hz to 1kHz. The preamplifier can eliminate the DC offset voltage and has low input-referred noise by novel circuit configuration and theoretical analysis.展开更多
In order to obtain a new precursor for LiFePO4, Fe2P2O7 with high purity was prepared through solid phase reaction at 650 ℃ using starting materials of FeC2O4 and NH4H2PO4 in an argon atmosphere. Using the as-prepare...In order to obtain a new precursor for LiFePO4, Fe2P2O7 with high purity was prepared through solid phase reaction at 650 ℃ using starting materials of FeC2O4 and NH4H2PO4 in an argon atmosphere. Using the as-prepared Fe2P2O7, Li2CO3 and glucose as raw materials, pure LiFePO4 and LiFePO4/C composite materials were respectively synthesized by solid state reaction at 700 ℃ in an argon atmosphere. X-ray diffractometry and scanning electron microscopy(SEM) were employed to characterize the as-prepared Fe2P2O7, LiFePO4 and LiFePO4/C. The as-prepared Fe2P2O7 crystallizes in the Cl space group and belongs to β-Fe2P2O7 for crystal phase. The particle size distribution of Fe2P2O7 observed by SEM is 0.4-3.0 μm. During the Li^+ ion chemical intercalation, radical P2O7^4- is disrupted into two PO4^3- ions in the presence of O^2-, thus providing a feasible technique to dispose this poor dissolvable pyrophosphate. LiFePO4/C composite exhibits initial charge and discharge capacities of 154 and 132 mA·h/g, respectively.展开更多
The corrosion pathways in AA2024-T3, AA5083-O and AA6082-T6 alloys have been investigated. The objective of the investigation is to further the understanding of the complex localised corrosion mechanism in aluminium a...The corrosion pathways in AA2024-T3, AA5083-O and AA6082-T6 alloys have been investigated. The objective of the investigation is to further the understanding of the complex localised corrosion mechanism in aluminium alloys. The investigation was carried out by examining the corroded surfaces of the alloys after potentiodynamic polarization tests in a 3.5% NaCl solution with the aid of a scanning electron microscope, and by analysing the flow of anolyte solution using the scanning vibrating electrode technique. The results revealed that the overall corrosion pathways in the alloys are distinctively different and are influenced by the flow of anolyte solution. Also revealed, was the fact that corrosion propagates in two ways (particularly in the AA5083-O and AA6082-T6 alloys): an overall pathway in the corrosion front (filiform-like pathway in the AA5083 alloy and organized linear pathways in AA6082 alloy); and the crystallographic channelling along the (100) directions. These are dependent on the grain distinct features of the AA5083-O and AA6082-T6 alloys and are not influenced by the presence of coarse second phase particles in these alloys, compared with the AA2024-T3 alloy, where the corrosion pathways are more dependent on the presence of second phase particles and grain boundary character.展开更多
文摘Hard carbons(HCs)are recognized as potential anode materials for sodium-ion batteries(SIBs)because of their low cost,environmental friendliness,and the abundance of their precursors.The presence of graphitic domains,numerous pores,and disordered carbon layers in HCs plays a significant role in determining their sodium storage ability,but these structural features depend on the precursor used.The influence of functional groups,including heteroatoms and oxygen-containing groups,and the microstructure of the precursor on the physical and electrochemical properties of the HC produced are evaluated,and the effects of carbonization conditions(carbonization temperature,heating rate and atmosphere)are also discussed.
文摘A monolithic integrated CMOS preamplifier is presented for neural recording applications. Two AC-coupied capacitors are used to eliminate the large and random DC offsets existing in the electrode-electrolyte interface. Diode-connected nMOS transistors with a negative voltage between the gate and source are candidates for the large resistors necessary for the preamplifier. A novel analysis is given to determine the noise power spectral density. Simulation results show that the two-stage CMOS preamplifier in a closed-loop capacitive feedback configuration provides an AC in-band gain of 38.8dB,a DC gain of 0,and an input-referred noise of 277nVmax, integrated from 0. 1Hz to 1kHz. The preamplifier can eliminate the DC offset voltage and has low input-referred noise by novel circuit configuration and theoretical analysis.
基金Project(50604018)supported by the National Natural Science Foundation of China
文摘In order to obtain a new precursor for LiFePO4, Fe2P2O7 with high purity was prepared through solid phase reaction at 650 ℃ using starting materials of FeC2O4 and NH4H2PO4 in an argon atmosphere. Using the as-prepared Fe2P2O7, Li2CO3 and glucose as raw materials, pure LiFePO4 and LiFePO4/C composite materials were respectively synthesized by solid state reaction at 700 ℃ in an argon atmosphere. X-ray diffractometry and scanning electron microscopy(SEM) were employed to characterize the as-prepared Fe2P2O7, LiFePO4 and LiFePO4/C. The as-prepared Fe2P2O7 crystallizes in the Cl space group and belongs to β-Fe2P2O7 for crystal phase. The particle size distribution of Fe2P2O7 observed by SEM is 0.4-3.0 μm. During the Li^+ ion chemical intercalation, radical P2O7^4- is disrupted into two PO4^3- ions in the presence of O^2-, thus providing a feasible technique to dispose this poor dissolvable pyrophosphate. LiFePO4/C composite exhibits initial charge and discharge capacities of 154 and 132 mA·h/g, respectively.
基金EPSRC for financial support through the LATEST2 Programme grant (EP/H020047/1)
文摘The corrosion pathways in AA2024-T3, AA5083-O and AA6082-T6 alloys have been investigated. The objective of the investigation is to further the understanding of the complex localised corrosion mechanism in aluminium alloys. The investigation was carried out by examining the corroded surfaces of the alloys after potentiodynamic polarization tests in a 3.5% NaCl solution with the aid of a scanning electron microscope, and by analysing the flow of anolyte solution using the scanning vibrating electrode technique. The results revealed that the overall corrosion pathways in the alloys are distinctively different and are influenced by the flow of anolyte solution. Also revealed, was the fact that corrosion propagates in two ways (particularly in the AA5083-O and AA6082-T6 alloys): an overall pathway in the corrosion front (filiform-like pathway in the AA5083 alloy and organized linear pathways in AA6082 alloy); and the crystallographic channelling along the (100) directions. These are dependent on the grain distinct features of the AA5083-O and AA6082-T6 alloys and are not influenced by the presence of coarse second phase particles in these alloys, compared with the AA2024-T3 alloy, where the corrosion pathways are more dependent on the presence of second phase particles and grain boundary character.