When boost power factor correction(PFC) circuit works with large scale load fluctuations, it is easy to cause a higher total harmonic distortion and a lower power factor because of traditional controllers and inductor...When boost power factor correction(PFC) circuit works with large scale load fluctuations, it is easy to cause a higher total harmonic distortion and a lower power factor because of traditional controllers and inductor current mode. To solve this problem, this paper proposes a PFC control system, which can operate with load fluctuations up to 1 000 W by using duty cycle feed-forward control theory to achieve smooth switching mode. The duty cycles in the next period of the control system are pre-estimated in the current cycle, which enhances the speeds of AD samplers and switching frequency, and reduces the cost and volume of the equipment to some extent. Introductions of system decoupling and feed-forward of input-voltage greatly improve the system performance. Both theoretical simulation and experimental results prove the advantage of the proposed scheme.展开更多
Energy efficiency can be improved by reducing the amount of energy that we demand, and by changing our behaviors to reduce the amount of energy that we waste. This scheme manipulates the problem of incremental demand,...Energy efficiency can be improved by reducing the amount of energy that we demand, and by changing our behaviors to reduce the amount of energy that we waste. This scheme manipulates the problem of incremental demand, and low Power Factor (PF) for industrial plants, starting with walk through surveys, data analysis, providing advices to insure personnel involvement, and suggestions of practical circuits to attain the target. Elements of effective energy management program can be configured of management commitment, audit, analysis and implementation. Energy management opportunities can he operational and maintenance strategies, retrofit or modification strategies and new design strategies. The new technique of Power Factor Correction (PFC) that has been designed was the High Active Boost Power Factor Correction Pre-regulator Circuit, which was resulted in single / three phase PFC of about unity, in hand with a regulated output single phase voltage of about 220 VAC.展开更多
PSPICE model driven by an electric equivalent circuit of a piezoelectric circuit is presented. In order to confirm this model to be effective, an independent model of cold cathode fluorescent lamp(CCFL) driving circui...PSPICE model driven by an electric equivalent circuit of a piezoelectric circuit is presented. In order to confirm this model to be effective, an independent model of cold cathode fluorescent lamp(CCFL) driving circuit is used to conduct simulations, leading to a precise modeling. A library is configured through modeling and its accuracy is verified through simulations for widely used and representative lamps such as CCFL, fluorescent lamps, HID lamps, and electrodeless fluorescent lamps. On the basis of experiments, a lamp simulation is also performed using PSPICE, which allows us to take advantage of the lamp library easily. Also, PSPICE model driven by an electric equivalent circuit of a piezoelectric transformer is presented. In order to confirm this model to be effective, an independent model of CCFL driving circuit is used to conduct simulations, leading to a precise modeling. In addition, a new type of electronic ballast is proposed, which allows 35 W-class(T5-class) fluorescent lamp to work. This system is built by a rectifier which has improved power factor and half-bridge series resonant inverter. Also, with size of 27.5 mm high, 27.5 mm wide and 2.5 mm thick, the produced piezoelectric transformer has a high step-up ratio, through which it is possible for the electric ballast circuit to be lighter, smaller and more efficient. After the produced ballast is used to drive the fluorescent lamp for 25 min, it yields 0.95 in power factor correction, 86% in efficiency, 35.07 W in output voltage and 20.5 °C in temperature increase while meeting the characteristics of the 35 W-class fluorescent lamp.展开更多
For a conventional high-power active power factor correction(APFC)boost converter,its output capacitor needs to be precharged,which means that two power switches of the main circuit and the control circuit are needed ...For a conventional high-power active power factor correction(APFC)boost converter,its output capacitor needs to be precharged,which means that two power switches of the main circuit and the control circuit are needed to be respectively turned on and turned off in a fixed order.After the main circuit switch is turned on,it is necessary to wait for precharging before turning on the control circuit power switch.Once an inadvertent operation is performed,an overcurrent phenomenon from the output capacitor will occur.In this study,the buck circuit is used as the pre-stage snubber circuit,which can directly supply power to the circuit without precharging the output capacitor.As a result,potential safety hazard caused by the overcurrent due to the capacitor and the charging maloperation during the start-up stage can be avoided.Theoretical analysis and simulation experiment show that the DC boost converter with buck buffer can maintain the peak value of the main circuit within the safe range when the device boot does not precharge the output capacitor,and thus the safety and stable operation of the DC boost converter are ensured.展开更多
In order to improve the steady state performance,dynamic response and power factor of traditional power factor correction(PFC)digital control method and reduce the harmonic distortion of input current,a double closed ...In order to improve the steady state performance,dynamic response and power factor of traditional power factor correction(PFC)digital control method and reduce the harmonic distortion of input current,a double closed loop active power factorcorrection(APFC)control method with feed-forward is proposed.Firstly,the small signal model of Boost PFC control systemis built and the system transfer function is deduced,and then the parameters of the main device with Boost topology is estimated.By means of the feed-forward,the system can quickly respond to the change in input voltage.Furthermore,the use ofvoltage loop and current loop can achieve input current and output voltage regulation Simulink modeling shows that this methodcan effectively control the output voltage in case of input voltage largely fluctuating,improve the system dynamic response abilityand input power factor,and reduce the input current harmonic distortion展开更多
A 5-level PFC (power factor correction) topology with fault-diagnostic and fault-tolerant capability is proposed and compared to known structures. It is derived from a 3-level non differential double-boost PFC inclu...A 5-level PFC (power factor correction) topology with fault-diagnostic and fault-tolerant capability is proposed and compared to known structures. It is derived from a 3-level non differential double-boost PFC including fly-cap cells. The series-connection of the two low-voltage switching-cells is decoupled by a single flying capacitor that provides a direct fault-tolerant capability and a post-failure operation increasing the availability of converter. The monitoring of the voltages across flying capacitors allows a rapid detection and localization either for open circuit failure or short-circuits failure. A PWM (pulse width modulation) phase-disposition type reconfiguration is also used and presented in order to optimize both normal operation and post-fault continuation. The design and the most important features are highlighted thanks to a digital control frame and a mock-up rated to: AC voltage network 115 V-load 400 V-nominal power 4 kW-switching frequency 62 kHz.展开更多
In this paper, a high power factor LED driver with hot swap, smart output voltage regulation and dimming control is proposed. The dimming control is used to change LED brightness. During converter is working, the hot ...In this paper, a high power factor LED driver with hot swap, smart output voltage regulation and dimming control is proposed. The dimming control is used to change LED brightness. During converter is working, the hot swap function supply users to remove and insert LED module. The smart output voltage can regulate quickly and rightly output voltage in different number of LED series connection. The system consists two stages, one is 50 W flyback converter which is used as power factor corrector, it is input source is 110-220 V, PF (power factor) is about 0,994. The other is Boost DC/DC converter, it can offer 35-60 V of output voltage. Finally, a prototype has been built and tested. The simulation and experimental results are shown to verify the feasibility of the proposed method.展开更多
This paper investigates the usage of passive harmonic filters to mitigate harmonic distortions when two resonant points are present in a system caused by shunt capacitors used for power factor correction and bus volta...This paper investigates the usage of passive harmonic filters to mitigate harmonic distortions when two resonant points are present in a system caused by shunt capacitors used for power factor correction and bus voltage regulation. Six scenarios were investigated using DIgSILENT 14 power factor)' software. The investigations are with and without power factor correction and capacitors used to increase bus voltage. Passive harmonic filters are designed to reduce harmonic distortions at the PCC (point of common coupling) to fall within the IEEE 519 harmonic voltage and current limits caused by parallel resonance. The results of the case studies are analysed to evaluate the effectiveness of the filter design.展开更多
This paper presents the use of fuzzy logic technique to control the reactive power of load and hence improve the source power factor. A shunt compensator is proposed, which consists of a voltage controlled reactor by ...This paper presents the use of fuzzy logic technique to control the reactive power of load and hence improve the source power factor. A shunt compensator is proposed, which consists of a voltage controlled reactor by full-wave thyristor bridge in parallel with a capacitor. The proposed voltage control technique composed of two independent fuzzy controllers, primary and secondary. The PFC (primary fuzzy controller) is designed based on linearization method to introduce to the network the nearest value of reactive power (VAR) required to correct the power factor. The SFC (secondary fuzzy controller) is designed to achieve accurate compensation for the required VAR to achieve the pre-set power factor value. Simulations for 15 different practical study cases are presented to evaluate the performance of the controller, and the results show how the designed controller is fast and accurate. Harmonics analyses are carried out up to the 13th harmonic to determine the requirement of harmonics filter.展开更多
Static, passive, filters present an economic and simple solution to the harmonic distortion at the distribution level and at the same time supply the required reactive power for voltage support and/or power factor cor...Static, passive, filters present an economic and simple solution to the harmonic distortion at the distribution level and at the same time supply the required reactive power for voltage support and/or power factor correction. Applying these filters to a distribution network, if not properly designed, may have an adverse effect on the network. This paper presents analysis of the effects of using passive harmonic filters in a power distribution networks. The driving point impedance at the node where the filter installed, as a measure of how harmonic currents would produce harmonic voltages, is determined as function of the filter parameters. Hence, effects of filter parameters on the system impedance, parallel resonant frequency and impedance at resonance are illustrated. The effects of using more than one filter are also examined. A method for the optimal design of a passive filter considering the component limits, harmonic distortion limits and parameter tolerances is also presented. The proposed optimization model has proved its effectiveness through application to measurements at a real distribution feeder.展开更多
This paper presents a new ZVT (zero-voltage transition) single-stage ac-to-dc converter using PWM (pulse width modulation) and HF (high frequency) transformer isolation with capacitive output filter. In this con...This paper presents a new ZVT (zero-voltage transition) single-stage ac-to-dc converter using PWM (pulse width modulation) and HF (high frequency) transformer isolation with capacitive output filter. In this converter a front-end power factor corrected boost stage integrates with a cascaded dc-to-dc bridge HF converter. The front-end boost converter operates in discontinuous current mode and ensures natural power factor correction with very simple control. The auxiliary circuit of this topology deals with very small power and is placed out of the main power path. As a result, the auxiliary circuit components have smaller power rating as opposed to main converter components. Also, output rectifier voltage is clamped to output voltage due to capacitive output filter. Identification and analyses of different operating modes of this converter are presented. Based on these analyses design example of a 50 kHz, 48 V, 1 kW ac-to-dc converter is presented. PSPICE simulation results of the designed converter are presented and explained to verify the performance of this converter.展开更多
This work explores the feasibility of a novel predictive control strategy on a power factor correction system. The proposed control strategy allows a significant reduction of the power losses respect to a classical pr...This work explores the feasibility of a novel predictive control strategy on a power factor correction system. The proposed control strategy allows a significant reduction of the power losses respect to a classical predictive control strategy working with a fixed execution time Ts. The proposed control strategy operates with a variable execution time T~, and it has been implemented using a low cost hardware platform based on TI~ TMS320F2812 DSP. The chosen platform is capable to execute a control strategy code with a variable execution time T,. This operation can be performed by setting in proper manner, the timer registers of one of two event manager A/B blocks present on the mentioned DSP (digital signal processor).展开更多
When the fundamental frequency is shifting, it is hard for traditional repetitive controller to work at the resonant frequencies. In this paper, a novel adaptive repetitive controller for power factor correction syste...When the fundamental frequency is shifting, it is hard for traditional repetitive controller to work at the resonant frequencies. In this paper, a novel adaptive repetitive controller for power factor correction systems is proposed to suppress the current harmonics. Through the controller, the shifting sampling times of the repetitive controller in a fundamental period can be obtained. Mathematical analysis, simulations and physical experiments have validated the effectiveness of the adaptive repetitive controller.展开更多
基金Supported by the National Basic Research Program of China("973"Program,No.2009CB219700)
文摘When boost power factor correction(PFC) circuit works with large scale load fluctuations, it is easy to cause a higher total harmonic distortion and a lower power factor because of traditional controllers and inductor current mode. To solve this problem, this paper proposes a PFC control system, which can operate with load fluctuations up to 1 000 W by using duty cycle feed-forward control theory to achieve smooth switching mode. The duty cycles in the next period of the control system are pre-estimated in the current cycle, which enhances the speeds of AD samplers and switching frequency, and reduces the cost and volume of the equipment to some extent. Introductions of system decoupling and feed-forward of input-voltage greatly improve the system performance. Both theoretical simulation and experimental results prove the advantage of the proposed scheme.
文摘Energy efficiency can be improved by reducing the amount of energy that we demand, and by changing our behaviors to reduce the amount of energy that we waste. This scheme manipulates the problem of incremental demand, and low Power Factor (PF) for industrial plants, starting with walk through surveys, data analysis, providing advices to insure personnel involvement, and suggestions of practical circuits to attain the target. Elements of effective energy management program can be configured of management commitment, audit, analysis and implementation. Energy management opportunities can he operational and maintenance strategies, retrofit or modification strategies and new design strategies. The new technique of Power Factor Correction (PFC) that has been designed was the High Active Boost Power Factor Correction Pre-regulator Circuit, which was resulted in single / three phase PFC of about unity, in hand with a regulated output single phase voltage of about 220 VAC.
文摘PSPICE model driven by an electric equivalent circuit of a piezoelectric circuit is presented. In order to confirm this model to be effective, an independent model of cold cathode fluorescent lamp(CCFL) driving circuit is used to conduct simulations, leading to a precise modeling. A library is configured through modeling and its accuracy is verified through simulations for widely used and representative lamps such as CCFL, fluorescent lamps, HID lamps, and electrodeless fluorescent lamps. On the basis of experiments, a lamp simulation is also performed using PSPICE, which allows us to take advantage of the lamp library easily. Also, PSPICE model driven by an electric equivalent circuit of a piezoelectric transformer is presented. In order to confirm this model to be effective, an independent model of CCFL driving circuit is used to conduct simulations, leading to a precise modeling. In addition, a new type of electronic ballast is proposed, which allows 35 W-class(T5-class) fluorescent lamp to work. This system is built by a rectifier which has improved power factor and half-bridge series resonant inverter. Also, with size of 27.5 mm high, 27.5 mm wide and 2.5 mm thick, the produced piezoelectric transformer has a high step-up ratio, through which it is possible for the electric ballast circuit to be lighter, smaller and more efficient. After the produced ballast is used to drive the fluorescent lamp for 25 min, it yields 0.95 in power factor correction, 86% in efficiency, 35.07 W in output voltage and 20.5 °C in temperature increase while meeting the characteristics of the 35 W-class fluorescent lamp.
基金National Natural Science Foundation of China(No.61761027)。
文摘For a conventional high-power active power factor correction(APFC)boost converter,its output capacitor needs to be precharged,which means that two power switches of the main circuit and the control circuit are needed to be respectively turned on and turned off in a fixed order.After the main circuit switch is turned on,it is necessary to wait for precharging before turning on the control circuit power switch.Once an inadvertent operation is performed,an overcurrent phenomenon from the output capacitor will occur.In this study,the buck circuit is used as the pre-stage snubber circuit,which can directly supply power to the circuit without precharging the output capacitor.As a result,potential safety hazard caused by the overcurrent due to the capacitor and the charging maloperation during the start-up stage can be avoided.Theoretical analysis and simulation experiment show that the DC boost converter with buck buffer can maintain the peak value of the main circuit within the safe range when the device boot does not precharge the output capacitor,and thus the safety and stable operation of the DC boost converter are ensured.
基金National Natural Science Foundation of China(No.61261029)
文摘In order to improve the steady state performance,dynamic response and power factor of traditional power factor correction(PFC)digital control method and reduce the harmonic distortion of input current,a double closed loop active power factorcorrection(APFC)control method with feed-forward is proposed.Firstly,the small signal model of Boost PFC control systemis built and the system transfer function is deduced,and then the parameters of the main device with Boost topology is estimated.By means of the feed-forward,the system can quickly respond to the change in input voltage.Furthermore,the use ofvoltage loop and current loop can achieve input current and output voltage regulation Simulink modeling shows that this methodcan effectively control the output voltage in case of input voltage largely fluctuating,improve the system dynamic response abilityand input power factor,and reduce the input current harmonic distortion
文摘A 5-level PFC (power factor correction) topology with fault-diagnostic and fault-tolerant capability is proposed and compared to known structures. It is derived from a 3-level non differential double-boost PFC including fly-cap cells. The series-connection of the two low-voltage switching-cells is decoupled by a single flying capacitor that provides a direct fault-tolerant capability and a post-failure operation increasing the availability of converter. The monitoring of the voltages across flying capacitors allows a rapid detection and localization either for open circuit failure or short-circuits failure. A PWM (pulse width modulation) phase-disposition type reconfiguration is also used and presented in order to optimize both normal operation and post-fault continuation. The design and the most important features are highlighted thanks to a digital control frame and a mock-up rated to: AC voltage network 115 V-load 400 V-nominal power 4 kW-switching frequency 62 kHz.
文摘In this paper, a high power factor LED driver with hot swap, smart output voltage regulation and dimming control is proposed. The dimming control is used to change LED brightness. During converter is working, the hot swap function supply users to remove and insert LED module. The smart output voltage can regulate quickly and rightly output voltage in different number of LED series connection. The system consists two stages, one is 50 W flyback converter which is used as power factor corrector, it is input source is 110-220 V, PF (power factor) is about 0,994. The other is Boost DC/DC converter, it can offer 35-60 V of output voltage. Finally, a prototype has been built and tested. The simulation and experimental results are shown to verify the feasibility of the proposed method.
文摘This paper investigates the usage of passive harmonic filters to mitigate harmonic distortions when two resonant points are present in a system caused by shunt capacitors used for power factor correction and bus voltage regulation. Six scenarios were investigated using DIgSILENT 14 power factor)' software. The investigations are with and without power factor correction and capacitors used to increase bus voltage. Passive harmonic filters are designed to reduce harmonic distortions at the PCC (point of common coupling) to fall within the IEEE 519 harmonic voltage and current limits caused by parallel resonance. The results of the case studies are analysed to evaluate the effectiveness of the filter design.
文摘This paper presents the use of fuzzy logic technique to control the reactive power of load and hence improve the source power factor. A shunt compensator is proposed, which consists of a voltage controlled reactor by full-wave thyristor bridge in parallel with a capacitor. The proposed voltage control technique composed of two independent fuzzy controllers, primary and secondary. The PFC (primary fuzzy controller) is designed based on linearization method to introduce to the network the nearest value of reactive power (VAR) required to correct the power factor. The SFC (secondary fuzzy controller) is designed to achieve accurate compensation for the required VAR to achieve the pre-set power factor value. Simulations for 15 different practical study cases are presented to evaluate the performance of the controller, and the results show how the designed controller is fast and accurate. Harmonics analyses are carried out up to the 13th harmonic to determine the requirement of harmonics filter.
文摘Static, passive, filters present an economic and simple solution to the harmonic distortion at the distribution level and at the same time supply the required reactive power for voltage support and/or power factor correction. Applying these filters to a distribution network, if not properly designed, may have an adverse effect on the network. This paper presents analysis of the effects of using passive harmonic filters in a power distribution networks. The driving point impedance at the node where the filter installed, as a measure of how harmonic currents would produce harmonic voltages, is determined as function of the filter parameters. Hence, effects of filter parameters on the system impedance, parallel resonant frequency and impedance at resonance are illustrated. The effects of using more than one filter are also examined. A method for the optimal design of a passive filter considering the component limits, harmonic distortion limits and parameter tolerances is also presented. The proposed optimization model has proved its effectiveness through application to measurements at a real distribution feeder.
文摘This paper presents a new ZVT (zero-voltage transition) single-stage ac-to-dc converter using PWM (pulse width modulation) and HF (high frequency) transformer isolation with capacitive output filter. In this converter a front-end power factor corrected boost stage integrates with a cascaded dc-to-dc bridge HF converter. The front-end boost converter operates in discontinuous current mode and ensures natural power factor correction with very simple control. The auxiliary circuit of this topology deals with very small power and is placed out of the main power path. As a result, the auxiliary circuit components have smaller power rating as opposed to main converter components. Also, output rectifier voltage is clamped to output voltage due to capacitive output filter. Identification and analyses of different operating modes of this converter are presented. Based on these analyses design example of a 50 kHz, 48 V, 1 kW ac-to-dc converter is presented. PSPICE simulation results of the designed converter are presented and explained to verify the performance of this converter.
文摘This work explores the feasibility of a novel predictive control strategy on a power factor correction system. The proposed control strategy allows a significant reduction of the power losses respect to a classical predictive control strategy working with a fixed execution time Ts. The proposed control strategy operates with a variable execution time T~, and it has been implemented using a low cost hardware platform based on TI~ TMS320F2812 DSP. The chosen platform is capable to execute a control strategy code with a variable execution time T,. This operation can be performed by setting in proper manner, the timer registers of one of two event manager A/B blocks present on the mentioned DSP (digital signal processor).
基金the National Natural Science Foundation of China(No.61463037)the Technology Project of Education Department of Jiangxi(No.GJJ14531)the Science&Technology Project of Jiangxi(No.2010BGA01000)
文摘When the fundamental frequency is shifting, it is hard for traditional repetitive controller to work at the resonant frequencies. In this paper, a novel adaptive repetitive controller for power factor correction systems is proposed to suppress the current harmonics. Through the controller, the shifting sampling times of the repetitive controller in a fundamental period can be obtained. Mathematical analysis, simulations and physical experiments have validated the effectiveness of the adaptive repetitive controller.