同时定位与建图(simultaneous localization and mapping,SLAM)是地下空间自主探测、自动巡检和应急救援的关键。然而,地下空间巷道狭长、地形复杂、光照不均等使得激光点云和视觉图像匹配极易发生退化,进而导致多源传感器数据融合SLAM...同时定位与建图(simultaneous localization and mapping,SLAM)是地下空间自主探测、自动巡检和应急救援的关键。然而,地下空间巷道狭长、地形复杂、光照不均等使得激光点云和视觉图像匹配极易发生退化,进而导致多源传感器数据融合SLAM精度不足,甚至失效。为此,本文提出一种增强稳健性的多源传感器数据动态加权融合SLAM方法。首先,在视觉图像预处理阶段,采用了一种基于色调、饱和度、亮度(hue,stauration,value,HSV)空间的图像增强技术,结合单参数同态滤波和对比度受限的自适应直方图均衡化(contrast limited adaptive histogram equalization,CLAHE)算法,有效提升了地下空间图像的亮度和对比度,从而增强了视觉里程计的稳健性。然后,通过马氏距离一致性检验方法对各传感器的数据质量进行评估,分析数据退化情况,并自适应地选择适合当前场景的传感器数据进行融合。最后,在综合考虑各传感器关键参数的基础上,构建了多源传感器因子图模型,并根据数据质量动态调整各传感器数据融合因子的权重,形成多源传感器数据权重动态组合模型。为验证本文方法的有效性,使用自主设计集成的移动机器人在地下走廊、开挖的地铁隧道和煤矿巷道等典型地下空间中分别进行了试验,并与多种主流SLAM方法进行定性、定量对比分析。结果表明:本文方法最大轨迹均方根误差(root mean square error,RMSE)仅为0.19 m,以高精度地面三维激光扫描获取的点云为参考,平均点云直接距离比较(cloud to cloud,C2C)小于0.13 m,所构建的点云地图具有较好的全局一致性和几何结构真实性,验证了本文方法在复杂地下空间具有更高的精度和稳健性。展开更多
目前节点重要度评估中针对静态无权图的研究比较多,针对动态加权图的研究相对较少。针对加权网络提出了等效点权节点重要度评估方法;考虑加权网络的动态性,提出了动态距离矩阵更新算法;结合动态规划和迭代的思想,给出了一种新的求距离...目前节点重要度评估中针对静态无权图的研究比较多,针对动态加权图的研究相对较少。针对加权网络提出了等效点权节点重要度评估方法;考虑加权网络的动态性,提出了动态距离矩阵更新算法;结合动态规划和迭代的思想,给出了一种新的求距离矩阵的方法;考虑加权网络的社区性,提出了基于距离增量的分组算法;最后,综合给出了基于距离增量分组的动态节点重要度评估算法(node importance evaluation based on distance-increment grouping in dynamic weighted network,IDGD),通过在C-DBLP(digital bib-liography & library project in China)数据上的对比实验,验证了算法的可行性和有效性。展开更多
一个蛋白质可能在不同条件或不同时刻与不同的蛋白质发生相互作用,这称为蛋白质的动态特性.蛋白质在分子处理的不同阶段参与到不同的模块,与其他的蛋白质共同完成某项功能.因此,动态蛋白质相互作用的研究有助于提高蛋白质功能预测的准确...一个蛋白质可能在不同条件或不同时刻与不同的蛋白质发生相互作用,这称为蛋白质的动态特性.蛋白质在分子处理的不同阶段参与到不同的模块,与其他的蛋白质共同完成某项功能.因此,动态蛋白质相互作用的研究有助于提高蛋白质功能预测的准确率.结合蛋白质相互作用网络和时间序列基因表达数据,构建动态蛋白质相互作用网络.为降低PPI网络中假阴性对功能预测产生的负面影响,结合结构域信息和复合物信息,预测和产生新的相互作用,并对相互作用加权.基于构建的动态加权网络,提出一种功能预测方法 D-PIN(Dynamic protein interaction networks).基于三个不同的酵母相互作用网络实验结果表明,D-PIN方法的综合性能比现有方法提高了14%以上.结果验证了构建的动态加权蛋白质相互网络的有效性.展开更多
文摘同时定位与建图(simultaneous localization and mapping,SLAM)是地下空间自主探测、自动巡检和应急救援的关键。然而,地下空间巷道狭长、地形复杂、光照不均等使得激光点云和视觉图像匹配极易发生退化,进而导致多源传感器数据融合SLAM精度不足,甚至失效。为此,本文提出一种增强稳健性的多源传感器数据动态加权融合SLAM方法。首先,在视觉图像预处理阶段,采用了一种基于色调、饱和度、亮度(hue,stauration,value,HSV)空间的图像增强技术,结合单参数同态滤波和对比度受限的自适应直方图均衡化(contrast limited adaptive histogram equalization,CLAHE)算法,有效提升了地下空间图像的亮度和对比度,从而增强了视觉里程计的稳健性。然后,通过马氏距离一致性检验方法对各传感器的数据质量进行评估,分析数据退化情况,并自适应地选择适合当前场景的传感器数据进行融合。最后,在综合考虑各传感器关键参数的基础上,构建了多源传感器因子图模型,并根据数据质量动态调整各传感器数据融合因子的权重,形成多源传感器数据权重动态组合模型。为验证本文方法的有效性,使用自主设计集成的移动机器人在地下走廊、开挖的地铁隧道和煤矿巷道等典型地下空间中分别进行了试验,并与多种主流SLAM方法进行定性、定量对比分析。结果表明:本文方法最大轨迹均方根误差(root mean square error,RMSE)仅为0.19 m,以高精度地面三维激光扫描获取的点云为参考,平均点云直接距离比较(cloud to cloud,C2C)小于0.13 m,所构建的点云地图具有较好的全局一致性和几何结构真实性,验证了本文方法在复杂地下空间具有更高的精度和稳健性。
文摘目前节点重要度评估中针对静态无权图的研究比较多,针对动态加权图的研究相对较少。针对加权网络提出了等效点权节点重要度评估方法;考虑加权网络的动态性,提出了动态距离矩阵更新算法;结合动态规划和迭代的思想,给出了一种新的求距离矩阵的方法;考虑加权网络的社区性,提出了基于距离增量的分组算法;最后,综合给出了基于距离增量分组的动态节点重要度评估算法(node importance evaluation based on distance-increment grouping in dynamic weighted network,IDGD),通过在C-DBLP(digital bib-liography & library project in China)数据上的对比实验,验证了算法的可行性和有效性。
文摘一个蛋白质可能在不同条件或不同时刻与不同的蛋白质发生相互作用,这称为蛋白质的动态特性.蛋白质在分子处理的不同阶段参与到不同的模块,与其他的蛋白质共同完成某项功能.因此,动态蛋白质相互作用的研究有助于提高蛋白质功能预测的准确率.结合蛋白质相互作用网络和时间序列基因表达数据,构建动态蛋白质相互作用网络.为降低PPI网络中假阴性对功能预测产生的负面影响,结合结构域信息和复合物信息,预测和产生新的相互作用,并对相互作用加权.基于构建的动态加权网络,提出一种功能预测方法 D-PIN(Dynamic protein interaction networks).基于三个不同的酵母相互作用网络实验结果表明,D-PIN方法的综合性能比现有方法提高了14%以上.结果验证了构建的动态加权蛋白质相互网络的有效性.