期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于状态预测的多智能体动态协作算法 被引量:7
1
作者 彭军 刘亚 +2 位作者 吴敏 蒋富 张晓勇 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第20期5511-5515,共5页
针对复杂动态环境下的多智能体协作问题,提出基于信息处理和状态预测的优化动态协作算法。充分考虑其它智能体对环境的影响,采用重要度函数和信息处理方法,对协作所需信息进行筛选和处理。通过引入状态预测算法,在多智能体动态协作过程... 针对复杂动态环境下的多智能体协作问题,提出基于信息处理和状态预测的优化动态协作算法。充分考虑其它智能体对环境的影响,采用重要度函数和信息处理方法,对协作所需信息进行筛选和处理。通过引入状态预测算法,在多智能体动态协作过程中对智能体的行为和系统的状态进行预测,以实现协作结构的在线调整,使得多智能体能在内部以新的控制任务或新的平衡状态为目标,进行联合行动的动态协作。通过在典型的复杂动态MAS研究平台——机器人救援仿真比赛系统中应用,验证了该算法的有效性。 展开更多
关键词 多智能体系统 信息处理 状态预测 动态协作算法
在线阅读 下载PDF
Dynamic services selection algorithm in Web services composition supporting cross-enterprises collaboration 被引量:7
2
作者 胡春华 陈晓红 梁昔明 《Journal of Central South University》 SCIE EI CAS 2009年第2期269-274,共6页
Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration,an algorithm QCDSS(QoS constraints of dynamic Web services sele... Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration,an algorithm QCDSS(QoS constraints of dynamic Web services selection)to resolve dynamic Web services selection with QoS global optimal path,was proposed.The essence of the algorithm was that the problem of dynamic Web services selection with QoS global optimal path was transformed into a multi-objective services composition optimization problem with QoS constraints.The operations of the cross and mutation in genetic algorithm were brought into PSOA(particle swarm optimization algorithm),forming an improved algorithm(IPSOA)to solve the QoS global optimal problem.Theoretical analysis and experimental results indicate that the algorithm can better satisfy the time convergence requirement for Web services composition supporting cross-enterprises collaboration than the traditional algorithms. 展开更多
关键词 Web services composition optimal service selection improved particle swarm optimization algorithm (IPSOA) cross-enterprises collaboration
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部