针对基于动态主元分析的故障检测方法存在的主元个数较多以及计算效率低等问题,本文提出基于混合动态主元分析(Hybrid Dynamic Principal Component Analysis,HDP-CA)的复杂过程故障检测方法。该方法采用分步策略消除数据之间的自相关...针对基于动态主元分析的故障检测方法存在的主元个数较多以及计算效率低等问题,本文提出基于混合动态主元分析(Hybrid Dynamic Principal Component Analysis,HDP-CA)的复杂过程故障检测方法。该方法采用分步策略消除数据之间的自相关和互相关性,提高了故障检测的精度和效率。对TE过程典型故障和热连轧过程中断带故障检测结果表明:HDPCA方法提取的主元个数少于DPCA方法提取的主元个数。并且,基于HDPCA的T2和SPE统计量的检测性能和检测精度都由于基于DPCA的统计量。因此,本文提出的方法可以准确有效地检测出故障。展开更多
针对动态核主元分析(Dynamic Kernel Principal Component Analysis,DKPCA)在动态非线性过程监控中没有降低数据动态性的影响,导致统计量T^(2)具有显著自相关性的问题,提出一种基于去主元相关性的DKPCA(Dynamic Kernel Principal Compon...针对动态核主元分析(Dynamic Kernel Principal Component Analysis,DKPCA)在动态非线性过程监控中没有降低数据动态性的影响,导致统计量T^(2)具有显著自相关性的问题,提出一种基于去主元相关性的DKPCA(Dynamic Kernel Principal Component Analysis based on Removing Principal Component Correlation,DKPCA-RPCC)故障检测与诊断方法。首先,对原始数据X进行时滞扩展生成增广矩阵Y并使用KPCA计算主成分M;其次,利用已知数据重构增广矩阵Y,再使用KPCA计算主成分M;然后,通过主成分之间的差异来构建统计量进行故障检测;最后,利用基于变量贡献图的方法进行故障诊断。通过数值例子和田纳西-伊斯曼(Tennessee-Eastman,TE)过程进行仿真验证,并将仿真结果与KPCA、DPCA和DKPCA的结果进行对比。仿真结果说明,该方法在动态非线性过程监控中构建的统计量故障检测性能更高且具有较低的自相关性。展开更多
核概率主元分析(kernel probabilistic principal component analysis,KPPCA)能够有效去除过程的非线性。但是KPPCA仅构造了生产过程的静态线性关系,处理具有较强动态特性的实际工业生产过程效果较差。为克服上述缺点,提出一种基于动态K...核概率主元分析(kernel probabilistic principal component analysis,KPPCA)能够有效去除过程的非线性。但是KPPCA仅构造了生产过程的静态线性关系,处理具有较强动态特性的实际工业生产过程效果较差。为克服上述缺点,提出一种基于动态KPPCA的过程监测方法,利用核函数将经过压缩的动态增广数据映射到高维空间,然后利用PPCA对满足线性关系的过程变量映射值进行监测。仿真结果表明:该方法监测指标对故障的灵敏度高,误报率和漏检率较小,故障状况与正常状况很明显的分离开来。展开更多
文摘针对基于动态主元分析的故障检测方法存在的主元个数较多以及计算效率低等问题,本文提出基于混合动态主元分析(Hybrid Dynamic Principal Component Analysis,HDP-CA)的复杂过程故障检测方法。该方法采用分步策略消除数据之间的自相关和互相关性,提高了故障检测的精度和效率。对TE过程典型故障和热连轧过程中断带故障检测结果表明:HDPCA方法提取的主元个数少于DPCA方法提取的主元个数。并且,基于HDPCA的T2和SPE统计量的检测性能和检测精度都由于基于DPCA的统计量。因此,本文提出的方法可以准确有效地检测出故障。
文摘针对动态核主元分析(Dynamic Kernel Principal Component Analysis,DKPCA)在动态非线性过程监控中没有降低数据动态性的影响,导致统计量T^(2)具有显著自相关性的问题,提出一种基于去主元相关性的DKPCA(Dynamic Kernel Principal Component Analysis based on Removing Principal Component Correlation,DKPCA-RPCC)故障检测与诊断方法。首先,对原始数据X进行时滞扩展生成增广矩阵Y并使用KPCA计算主成分M;其次,利用已知数据重构增广矩阵Y,再使用KPCA计算主成分M;然后,通过主成分之间的差异来构建统计量进行故障检测;最后,利用基于变量贡献图的方法进行故障诊断。通过数值例子和田纳西-伊斯曼(Tennessee-Eastman,TE)过程进行仿真验证,并将仿真结果与KPCA、DPCA和DKPCA的结果进行对比。仿真结果说明,该方法在动态非线性过程监控中构建的统计量故障检测性能更高且具有较低的自相关性。
文摘核概率主元分析(kernel probabilistic principal component analysis,KPPCA)能够有效去除过程的非线性。但是KPPCA仅构造了生产过程的静态线性关系,处理具有较强动态特性的实际工业生产过程效果较差。为克服上述缺点,提出一种基于动态KPPCA的过程监测方法,利用核函数将经过压缩的动态增广数据映射到高维空间,然后利用PPCA对满足线性关系的过程变量映射值进行监测。仿真结果表明:该方法监测指标对故障的灵敏度高,误报率和漏检率较小,故障状况与正常状况很明显的分离开来。