This paper presents a new algorithm designed to control the shape of the output probability density function (PDF) of singular systems subjected to non-Gaussian input. The aim is to select a control input uk such that...This paper presents a new algorithm designed to control the shape of the output probability density function (PDF) of singular systems subjected to non-Gaussian input. The aim is to select a control input uk such that the output PDF is made as close as possible to a given PDF.Based on the B-spline neural network approximation of the output PDF, the control algorithm is formulated by extending the developed PDF control strategies of non-singular systems to singular systems. It has been shown that under certain conditions the stability of the closed-loop system can be guaranteed. Simulation examples are given to show the effectiveness of the proposed control algorithm.展开更多
Satellite communication systems(SCS) operating on frequency bands above 10 GHz are sensitive to atmosphere physical phenomena, especially rain attenuation. To evaluate impairments in satellite performance, stochastic ...Satellite communication systems(SCS) operating on frequency bands above 10 GHz are sensitive to atmosphere physical phenomena, especially rain attenuation. To evaluate impairments in satellite performance, stochastic dynamic modeling(SDM) is considered as an effective way to predict real-time satellite channel fading caused by rain. This article carries out a survey of SDM using stochastic differential equations(SDEs) currently in the literature. Special attention is given to the different input characteristics of each model to satisfy specific local conditions. Future research directions in SDM are also suggested in this paper.展开更多
Random vertical track irregularities are one of essential vibration sources in bridge, track structure and high-speed train systems. The common model of such irregularities is a stationary and ergodic Gaussian process...Random vertical track irregularities are one of essential vibration sources in bridge, track structure and high-speed train systems. The common model of such irregularities is a stationary and ergodic Gaussian process. The study presents the results of numerical dynamic analysis of advanced virtual models of composite BTT (bridge/ballasted track structure/high-speed train) systems. The analysis has been conducted for a series of types of single-span simply-supported railway composite (steel-concrete) bridges, with a symmetric platform, located on lines with ballasted track structure adapted for high-speed trains. The bridges are designed according to Polish bridge standards. A new methodology of numerical modeling and simulation of dynamic processes in BTT systems has been applied. The methodology takes into consideration viscoelastic suspensions of rail-vehicles, nonlinear Hertz wheel-rail contact stiffness and one-side wheel-rail contact, physically nonlinear elastic-damping properties of the track structure, random vertical track irregularities, approach slabs and other features. Computer algorithms of FE (finite element) modeling and simulation were programmed in Delphi. Both static and dynamic numerical investigations of the bridges forming the series of types have been carried out. It has been proved that in the case of common structural solutions of bridges and ballasted track structures, it is necessary to put certain limitations on operating speeds, macadam ballast and vertical track roughness.展开更多
This paper reviews the historic understanding of the predictability of atmospheric and oceanic motions, and interprets it in a general framework. On this basis, the existing challenges and unsolved problems in the stu...This paper reviews the historic understanding of the predictability of atmospheric and oceanic motions, and interprets it in a general framework. On this basis, the existing challenges and unsolved problems in the study of the intrinsic predictability limit(IPL) of weather and climate events of different spatio-temporal scales are summarized. Emphasis is also placed on the structure of the initial error and model parameter errors as well as the associated targeting observation issue. Finally, the predictability of atmospheric and oceanic motion in the ensemble-probabilistic methods widely used in current operational forecasts are discussed.The necessity of considering IPLs in the framework of stochastic dynamic systems is also addressed.展开更多
The adaptive systems theory to be presented in this paper consists of two closely related parts: adaptive estimation (or filtering, prediction) and adaptive control of dynamical systems. Both adaptive estimation and c...The adaptive systems theory to be presented in this paper consists of two closely related parts: adaptive estimation (or filtering, prediction) and adaptive control of dynamical systems. Both adaptive estimation and control are nonlinear mappings of the on-line observed signals of dynamical systems, where the main features are the uncertain-ties in both the system's structure and external disturbances, and the non-stationarity and dependency of the system signals. Thus, a key difficulty in establishing a mathematical theory of adaptive systems lies in how to deal with complicated nonlinear stochastic dynamical systems which describe the adaptation processes. In this paper, we will illustrate some of the basic concepts, methods and results through some simple examples. The following fundamental questions will be discussed: How much information is needed for estimation? How to deal with uncertainty by adaptation? How to analyze an adaptive system? What are the convergence or tracking performances of adaptation? How to find the proper rate of adaptation in some sense? We will also explore the following more fundamental questions: How much uncertainty can be dealt with by adaptation ? What are the limitations of adaptation ? How does the performance of adaptation depend on the prior information ? We will partially answer these questions by finding some 'critical values' and establishing some 'Impossibility Theorems' for the capability of adaptation, for several basic classes of nonlinear dynamical control systems with either parametric or nonparametric uncertainties.展开更多
The probabilistic solutions to some nonlinear stochastic dynamic (NSD) systems with various polynomial types of nonlinearities in displacements are analyzed with the subspace-exponential polynomial closure (subspace-E...The probabilistic solutions to some nonlinear stochastic dynamic (NSD) systems with various polynomial types of nonlinearities in displacements are analyzed with the subspace-exponential polynomial closure (subspace-EPC) method. The space of the state variables of the large-scale nonlinear stochastic dynamic system excited by Gaussian white noises is separated into two subspaces. Both sides of the Fokker-Planck-Kolmogorov (FPK) equation corresponding to the NSD system are then integrated over one of the subspaces. The FPK equation for the joint probability density function of the state variables in the other subspace is formulated. Therefore, the FPK equations in low dimensions are obtained from the original FPK equation in high dimensions and the FPK equations in low dimensions are solvable with the exponential polynomial closure method. Examples about multi-degree-offreedom NSD systems with various polynomial types of nonlinearities in displacements are given to show the effectiveness of the subspace-EPC method in these cases.展开更多
基金Supported by the Research Fund of Chinese Academy of Sciences (2004-1-4)
文摘This paper presents a new algorithm designed to control the shape of the output probability density function (PDF) of singular systems subjected to non-Gaussian input. The aim is to select a control input uk such that the output PDF is made as close as possible to a given PDF.Based on the B-spline neural network approximation of the output PDF, the control algorithm is formulated by extending the developed PDF control strategies of non-singular systems to singular systems. It has been shown that under certain conditions the stability of the closed-loop system can be guaranteed. Simulation examples are given to show the effectiveness of the proposed control algorithm.
基金supported by the National Natural Science Foundation of China (Grant No.91338201)
文摘Satellite communication systems(SCS) operating on frequency bands above 10 GHz are sensitive to atmosphere physical phenomena, especially rain attenuation. To evaluate impairments in satellite performance, stochastic dynamic modeling(SDM) is considered as an effective way to predict real-time satellite channel fading caused by rain. This article carries out a survey of SDM using stochastic differential equations(SDEs) currently in the literature. Special attention is given to the different input characteristics of each model to satisfy specific local conditions. Future research directions in SDM are also suggested in this paper.
文摘Random vertical track irregularities are one of essential vibration sources in bridge, track structure and high-speed train systems. The common model of such irregularities is a stationary and ergodic Gaussian process. The study presents the results of numerical dynamic analysis of advanced virtual models of composite BTT (bridge/ballasted track structure/high-speed train) systems. The analysis has been conducted for a series of types of single-span simply-supported railway composite (steel-concrete) bridges, with a symmetric platform, located on lines with ballasted track structure adapted for high-speed trains. The bridges are designed according to Polish bridge standards. A new methodology of numerical modeling and simulation of dynamic processes in BTT systems has been applied. The methodology takes into consideration viscoelastic suspensions of rail-vehicles, nonlinear Hertz wheel-rail contact stiffness and one-side wheel-rail contact, physically nonlinear elastic-damping properties of the track structure, random vertical track irregularities, approach slabs and other features. Computer algorithms of FE (finite element) modeling and simulation were programmed in Delphi. Both static and dynamic numerical investigations of the bridges forming the series of types have been carried out. It has been proved that in the case of common structural solutions of bridges and ballasted track structures, it is necessary to put certain limitations on operating speeds, macadam ballast and vertical track roughness.
基金supported by the National Natural Science Foundation of China(Grant Nos.41230420,41376018&41606012)
文摘This paper reviews the historic understanding of the predictability of atmospheric and oceanic motions, and interprets it in a general framework. On this basis, the existing challenges and unsolved problems in the study of the intrinsic predictability limit(IPL) of weather and climate events of different spatio-temporal scales are summarized. Emphasis is also placed on the structure of the initial error and model parameter errors as well as the associated targeting observation issue. Finally, the predictability of atmospheric and oceanic motion in the ensemble-probabilistic methods widely used in current operational forecasts are discussed.The necessity of considering IPLs in the framework of stochastic dynamic systems is also addressed.
基金This work is supported by the National Natural Science Foundation of China and the National Key Project of China.This paper is based on the presentation at the International Symposium on"Intervention and Adaptation in Complex Systems"held in Beijing from
文摘The adaptive systems theory to be presented in this paper consists of two closely related parts: adaptive estimation (or filtering, prediction) and adaptive control of dynamical systems. Both adaptive estimation and control are nonlinear mappings of the on-line observed signals of dynamical systems, where the main features are the uncertain-ties in both the system's structure and external disturbances, and the non-stationarity and dependency of the system signals. Thus, a key difficulty in establishing a mathematical theory of adaptive systems lies in how to deal with complicated nonlinear stochastic dynamical systems which describe the adaptation processes. In this paper, we will illustrate some of the basic concepts, methods and results through some simple examples. The following fundamental questions will be discussed: How much information is needed for estimation? How to deal with uncertainty by adaptation? How to analyze an adaptive system? What are the convergence or tracking performances of adaptation? How to find the proper rate of adaptation in some sense? We will also explore the following more fundamental questions: How much uncertainty can be dealt with by adaptation ? What are the limitations of adaptation ? How does the performance of adaptation depend on the prior information ? We will partially answer these questions by finding some 'critical values' and establishing some 'Impossibility Theorems' for the capability of adaptation, for several basic classes of nonlinear dynamical control systems with either parametric or nonparametric uncertainties.
文摘The probabilistic solutions to some nonlinear stochastic dynamic (NSD) systems with various polynomial types of nonlinearities in displacements are analyzed with the subspace-exponential polynomial closure (subspace-EPC) method. The space of the state variables of the large-scale nonlinear stochastic dynamic system excited by Gaussian white noises is separated into two subspaces. Both sides of the Fokker-Planck-Kolmogorov (FPK) equation corresponding to the NSD system are then integrated over one of the subspaces. The FPK equation for the joint probability density function of the state variables in the other subspace is formulated. Therefore, the FPK equations in low dimensions are obtained from the original FPK equation in high dimensions and the FPK equations in low dimensions are solvable with the exponential polynomial closure method. Examples about multi-degree-offreedom NSD systems with various polynomial types of nonlinearities in displacements are given to show the effectiveness of the subspace-EPC method in these cases.