A 15-year simulation of climate over East Asia is conducted with the latest version of a regional climate model RegCM3 nested in one-way mode to the ERA40 Re-analysis data. The performance of the model in simulating p...A 15-year simulation of climate over East Asia is conducted with the latest version of a regional climate model RegCM3 nested in one-way mode to the ERA40 Re-analysis data. The performance of the model in simulating present climate over East Asia and China is investigated. Results show that RegCM3 can reproduce well the atmospheric circulation over East Asia. The simulation of the main distribution patterns of surface air temperature and precipitation over China and their seasonal cycle/evolution, are basically agree with that of the observation. Meanwhile a general cold bias is found in the simulation. As for the precipitation, the model tends to overestimate the precipitation in northern China while underestimate it in southern China, particularly in winter. In general, the model has better performance in simulating temperature than precipitation.展开更多
The important effects of local land-sea thermodynamic contrast between the South China Sea (SCS) and Indochina Peninsula on SCS summer monsoon onset are preliminarily studied by using two sets of SSTA tests and two id...The important effects of local land-sea thermodynamic contrast between the South China Sea (SCS) and Indochina Peninsula on SCS summer monsoon onset are preliminarily studied by using two sets of SSTA tests and two ideal tests in s-p regional climate model. The result shows that warm SST in the SCS in winter and spring is favorable for the formation of monsoon circulation throughout all levels of the atmosphere over the sea, which hastens the onset of SCS summer monsoon. The effects of cold SST are generally the opposite. The local land-sea contrast in the SCS is one of the possible reasons for SCS summer monsoon onset. Superposed upon large-scale land-sea thermodynamic differences, it facilitates the formation of out-breaking onset characteristics of SCS summer monsoon in the SCS area.展开更多
Effects of aerosol with focus on the direct climate effect of anthropogenic sulfate aerosol under 2×CO2 condition were investigated by introducing aerosol distribution into the latest version of RegCM2. Two exper...Effects of aerosol with focus on the direct climate effect of anthropogenic sulfate aerosol under 2×CO2 condition were investigated by introducing aerosol distribution into the latest version of RegCM2. Two experiments, first run (2×CO2 + 0 aerosol concentration) and second run (2×CO2 + aerosol distribution), were made for 5 years respectively. Preliminary analysis shows that the direct climate effect of aerosol might cause a decrease of surface air temperature. The decrease might be larger in winter and in South China. The regional-averaged monthly precipitation might also decrease in most of the months due to the effect. The annual mean change of precipitation might be a decrease in East and an increase in West China. But the changes of both temperature and precipitation simulated were much smaller as compared to the greenhouse effect.展开更多
Regional climate models (RCMs) have the potential for more detailed surface characteristic and mesoscale modeling results than general circulation models (GCMs).These advantages have drawn significant focus on RCM dev...Regional climate models (RCMs) have the potential for more detailed surface characteristic and mesoscale modeling results than general circulation models (GCMs).These advantages have drawn significant focus on RCM development in East Asia.The Regional Integrated Environment Modeling System,version 2.0 (RIEMS2.0),has been developed from an earlier RCM,RIEMS1.0,by the Key Laboratory of Regional ClimateEnvironment for Temperate East Asia (RCE-TEA) and Nanjing University.A numerical experiment covering 1979 to 2008 (simulation duration from 1 January 1978 to 31 December 2008) with a 50-km spatial resolution was performed to test the ability of RIEMS2.0 to simulate long-term climate and climate changes in East Asia and to provide a basis for further development and applications.The simulated surface air temperature (SAT) was compared with observed meteorological data.The results show that RIEMS2.0 simulation reproduced the SAT spatial distribution in East Asia but that it was underestimated.The simulated 30-year averaged SAT was approximately 2.0°C lower than the observed SAT.The annual and interannual variations in the averaged SAT and their anomalies were both well reproduced in the model.A further analysis of three sub-regions representing different longitudinal ranges showed that there is a good correlation and consistency between the simulated results and the observed data.The annual variations,interannual variations for the averaged SAT,and the anomalies in the three sub-regions were also captured well by the model.In summary,RIEMS2.0 shows stability and does well both in simulating the long-term SAT in East Asia and in expressing sub-regional characteristics.展开更多
基金Research supported by the National Key Program for Developing Basic Sciences(2006CB400506) of China Climate Change Study Fund of the China Meteorological Administration(CCSF2008-8)
文摘A 15-year simulation of climate over East Asia is conducted with the latest version of a regional climate model RegCM3 nested in one-way mode to the ERA40 Re-analysis data. The performance of the model in simulating present climate over East Asia and China is investigated. Results show that RegCM3 can reproduce well the atmospheric circulation over East Asia. The simulation of the main distribution patterns of surface air temperature and precipitation over China and their seasonal cycle/evolution, are basically agree with that of the observation. Meanwhile a general cold bias is found in the simulation. As for the precipitation, the model tends to overestimate the precipitation in northern China while underestimate it in southern China, particularly in winter. In general, the model has better performance in simulating temperature than precipitation.
基金National Natural Science Foundation of China (40175021 40233037)
文摘The important effects of local land-sea thermodynamic contrast between the South China Sea (SCS) and Indochina Peninsula on SCS summer monsoon onset are preliminarily studied by using two sets of SSTA tests and two ideal tests in s-p regional climate model. The result shows that warm SST in the SCS in winter and spring is favorable for the formation of monsoon circulation throughout all levels of the atmosphere over the sea, which hastens the onset of SCS summer monsoon. The effects of cold SST are generally the opposite. The local land-sea contrast in the SCS is one of the possible reasons for SCS summer monsoon onset. Superposed upon large-scale land-sea thermodynamic differences, it facilitates the formation of out-breaking onset characteristics of SCS summer monsoon in the SCS area.
基金National Natural Science Fundamental of China (40125014) Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX1-SW-01-16) Supporting Fund for IPCC of China Meteorological Administration
文摘Effects of aerosol with focus on the direct climate effect of anthropogenic sulfate aerosol under 2×CO2 condition were investigated by introducing aerosol distribution into the latest version of RegCM2. Two experiments, first run (2×CO2 + 0 aerosol concentration) and second run (2×CO2 + aerosol distribution), were made for 5 years respectively. Preliminary analysis shows that the direct climate effect of aerosol might cause a decrease of surface air temperature. The decrease might be larger in winter and in South China. The regional-averaged monthly precipitation might also decrease in most of the months due to the effect. The annual mean change of precipitation might be a decrease in East and an increase in West China. But the changes of both temperature and precipitation simulated were much smaller as compared to the greenhouse effect.
基金supported by the National Basic Research Program of China under Grant 2011CB952003the Chinese Academy of Sciences Strategic Priority Program under Grant XDA05090206the National Natural Science Foundation of China under Grant 40975053
文摘Regional climate models (RCMs) have the potential for more detailed surface characteristic and mesoscale modeling results than general circulation models (GCMs).These advantages have drawn significant focus on RCM development in East Asia.The Regional Integrated Environment Modeling System,version 2.0 (RIEMS2.0),has been developed from an earlier RCM,RIEMS1.0,by the Key Laboratory of Regional ClimateEnvironment for Temperate East Asia (RCE-TEA) and Nanjing University.A numerical experiment covering 1979 to 2008 (simulation duration from 1 January 1978 to 31 December 2008) with a 50-km spatial resolution was performed to test the ability of RIEMS2.0 to simulate long-term climate and climate changes in East Asia and to provide a basis for further development and applications.The simulated surface air temperature (SAT) was compared with observed meteorological data.The results show that RIEMS2.0 simulation reproduced the SAT spatial distribution in East Asia but that it was underestimated.The simulated 30-year averaged SAT was approximately 2.0°C lower than the observed SAT.The annual and interannual variations in the averaged SAT and their anomalies were both well reproduced in the model.A further analysis of three sub-regions representing different longitudinal ranges showed that there is a good correlation and consistency between the simulated results and the observed data.The annual variations,interannual variations for the averaged SAT,and the anomalies in the three sub-regions were also captured well by the model.In summary,RIEMS2.0 shows stability and does well both in simulating the long-term SAT in East Asia and in expressing sub-regional characteristics.