期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
可全域表达的高精度低延时脉冲网络转换方法
1
作者 马钟 徐克欣 +1 位作者 李申 王钟犀 《集成电路与嵌入式系统》 2025年第3期15-23,共9页
不同于人工神经网络(ANN),脉冲神经网络(SNN)作为第三代神经网络技术的代表,基于生物神经元机制进行计算,使用脉冲信号序列来传递信息,展现出可观的能耗优势和海量数据的高速处理能力。然而,由于脉冲神经元具有复杂的动力学行为和脉冲... 不同于人工神经网络(ANN),脉冲神经网络(SNN)作为第三代神经网络技术的代表,基于生物神经元机制进行计算,使用脉冲信号序列来传递信息,展现出可观的能耗优势和海量数据的高速处理能力。然而,由于脉冲神经元具有复杂的动力学行为和脉冲计算不可微分的特性,现有的SNN直接训练方法效果欠佳,一定程度阻碍了SNN的广泛应用。目前,将高精度ANN转换为SNN被认为是最有前途的生成SNN的方法之一。然而,主流的ANN转换SNN方法存在局限性:首先,不支持负值脉冲,难以表达由动态视觉传感器相机采集的负向脉冲;其次,转换过程中低延时和高精度难以两全。针对以上问题,本文提出了一种可全域表达的新型脉冲神经元,对传统ANN中正负数值和DVS的正负极性均能进行全域表示,并且提出了一种阶梯式Leaky ReLU激活函数和一种区域收敛测试算法,以实现ANN至SNN的零误差转换。通过以上方法,实现可全域表达的高精度、低延迟和高鲁棒的ANN至SNN转换,本文方法在CIFAR10和CIFAR100数据集上表现出卓越性能。 展开更多
关键词 ANN转换SNN 阶梯式Leaky ReLU激活函数 区域收敛测试算法 全域表达 鲁棒性测试
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部