A factorial mating design in two environments was conducted using 7 cytoplasmic male sterile lines (A) and 5 restorer lines (R) along with their F1 (A × R) and F2 populations. The unconditional and conditio...A factorial mating design in two environments was conducted using 7 cytoplasmic male sterile lines (A) and 5 restorer lines (R) along with their F1 (A × R) and F2 populations. The unconditional and conditional analyses of genetic models and the corresponding statistic methods, including endospermic, cytoplasmic, and maternal plant genetic systems, were used to analyze the genetic relationships between protein content (PC) and the appearance quality traits of indica rice (Oryza sativa L.). The results from unconditional analysis indicated that PC was significantly correlated with the appearance quality traits of rice, except for the brown rice thickness (BRT). Only the genetic covariance between PC and the brown rice width (BRW) was positively correlative, whereas all the other pairwise traits were negatively correlative. The results from conditional analysis revealed that the weight of brown rice (WBR) or the amylose content (AC) could significantly affect the relationships between PC and the appearance quality traits of indica rice. The conditional analysis showed that WBR might negatively affect the relationships between PC and the brown rice length (BRL), BRW, or BRT through the geuotype x environmental (GE) interaction effects, but positively affected the relationships between PC and the ratio of brown rice length to width (RLW) or the ratio of brown rice length to thickness (RLT). The amylase content could positively affect the relationships between PC and BRL, RLW, RLT through the cytoplasmic effects and maternal additive effects, but negatively affected the relationships between PC and BRW.展开更多
文章从实际应用的角度对满意度模型进行了分析,并通过前人的研究对两种估计方法进行了多方面的比较;运用Monte Carlo模拟对CSI实用中样本量问题进行了探讨:应用proactive Monte Carlo证明PLS在小样本下估计效果比LISREL更具稳健性,又应...文章从实际应用的角度对满意度模型进行了分析,并通过前人的研究对两种估计方法进行了多方面的比较;运用Monte Carlo模拟对CSI实用中样本量问题进行了探讨:应用proactive Monte Carlo证明PLS在小样本下估计效果比LISREL更具稳健性,又应用reactive Monte Carlo模拟证明PLS对样本量也有要求,并非任何小样本都适用。展开更多
To evaluate the performance of real time kinematic (RTK) network algorithms without applying actual measurements, a new method called geometric precision evaluation methodology (GPEM) based on covariance analysis was ...To evaluate the performance of real time kinematic (RTK) network algorithms without applying actual measurements, a new method called geometric precision evaluation methodology (GPEM) based on covariance analysis was presented. Three types of multiple reference station interpolation algorithms, including partial derivation algorithm (PDA), linear interpolation algorithms (LIA) and least squares condition (LSC) were discussed and analyzed. The geometric dilution of precision (GDOP) was defined to describe the influence of the network geometry on the interpolation precision, and the different GDOP expressions of above-mentioned algorithms were deduced. In order to compare geometric precision characteristics among different multiple reference station network algorithms, a simulation was conducted, and the GDOP contours of these algorithms were enumerated. Finally, to confirm the validation of GPEM, an experiment was conducted using data from Unite State Continuously Operating Reference Stations (US-CORS), and the precision performances were calculated according to the real test data and GPEM, respectively. The results show that GPEM generates very accurate estimation of the performance compared to the real data test.展开更多
基金This work was supported by National Natural Science Foundation of China (No. 30571198) and the Science and Technology Office of Zhejiang Province (No. 2004C2020-2 and No. 011102471).
文摘A factorial mating design in two environments was conducted using 7 cytoplasmic male sterile lines (A) and 5 restorer lines (R) along with their F1 (A × R) and F2 populations. The unconditional and conditional analyses of genetic models and the corresponding statistic methods, including endospermic, cytoplasmic, and maternal plant genetic systems, were used to analyze the genetic relationships between protein content (PC) and the appearance quality traits of indica rice (Oryza sativa L.). The results from unconditional analysis indicated that PC was significantly correlated with the appearance quality traits of rice, except for the brown rice thickness (BRT). Only the genetic covariance between PC and the brown rice width (BRW) was positively correlative, whereas all the other pairwise traits were negatively correlative. The results from conditional analysis revealed that the weight of brown rice (WBR) or the amylose content (AC) could significantly affect the relationships between PC and the appearance quality traits of indica rice. The conditional analysis showed that WBR might negatively affect the relationships between PC and the brown rice length (BRL), BRW, or BRT through the geuotype x environmental (GE) interaction effects, but positively affected the relationships between PC and the ratio of brown rice length to width (RLW) or the ratio of brown rice length to thickness (RLT). The amylase content could positively affect the relationships between PC and BRL, RLW, RLT through the cytoplasmic effects and maternal additive effects, but negatively affected the relationships between PC and BRW.
文摘文章从实际应用的角度对满意度模型进行了分析,并通过前人的研究对两种估计方法进行了多方面的比较;运用Monte Carlo模拟对CSI实用中样本量问题进行了探讨:应用proactive Monte Carlo证明PLS在小样本下估计效果比LISREL更具稳健性,又应用reactive Monte Carlo模拟证明PLS对样本量也有要求,并非任何小样本都适用。
基金Project(61273055) supported by the National Natural Science Foundation of ChinaProject(CX2010B012) supported by Hunan Provincial Innovation Foundation for Postgraduate Students, ChinaProject(B100302) supported by Innovation Foundation for Postgraduate Students of National University of Defense Technology, China
文摘To evaluate the performance of real time kinematic (RTK) network algorithms without applying actual measurements, a new method called geometric precision evaluation methodology (GPEM) based on covariance analysis was presented. Three types of multiple reference station interpolation algorithms, including partial derivation algorithm (PDA), linear interpolation algorithms (LIA) and least squares condition (LSC) were discussed and analyzed. The geometric dilution of precision (GDOP) was defined to describe the influence of the network geometry on the interpolation precision, and the different GDOP expressions of above-mentioned algorithms were deduced. In order to compare geometric precision characteristics among different multiple reference station network algorithms, a simulation was conducted, and the GDOP contours of these algorithms were enumerated. Finally, to confirm the validation of GPEM, an experiment was conducted using data from Unite State Continuously Operating Reference Stations (US-CORS), and the precision performances were calculated according to the real test data and GPEM, respectively. The results show that GPEM generates very accurate estimation of the performance compared to the real data test.