Ontogeny and metamorphic. development of female reproductive organs in Ephedra sinica Stapf were surveyed. At the end of April, female cones began to initialize from the vegetative buds. Pollination occurred in mid-Ma...Ontogeny and metamorphic. development of female reproductive organs in Ephedra sinica Stapf were surveyed. At the end of April, female cones began to initialize from the vegetative buds. Pollination occurred in mid-May and seeds matured at the beginning of July. The ontogenetic pattern of female reproductive organs of E. sin ca is basically similar to that of E. distachya L. The foliar nature of the outer envelope of the ovule in Ephedra is corroborated. Reduction of ovule number as a tendency of speciation in the genus is substantiated by the occurrence of tri-ovulate cones coupled with comprehensive characters of the genus. The metamorphic patterns as well as the leaf nature of the outer envelope indicate that female cones of Ephedra are compound while the female reproductive units of the ovulate cone have been reduced from secondary reproductive shoots similar to those of cordaites by phylogenetic transformation, fusion and reduction. Each fertile bract together with its axillary female reproductive unit composed the Bract Scale and Seed Scale Complex of Ephedra.展开更多
Top‐down synthesis has been used to prepare catalytic materials with nanometer sizes,but fabricating atomically dispersed metal catalysts remains a challenge because surface single metal atoms are prone to aggregatio...Top‐down synthesis has been used to prepare catalytic materials with nanometer sizes,but fabricating atomically dispersed metal catalysts remains a challenge because surface single metal atoms are prone to aggregation or coalescence.A top‐down strategy is used to synthesize atomically dispersed metal catalysts,based on supported Ag nanoparticles.The changes of the geometric and electronic structures of the Ag atoms during the top‐down process are studied using the in situ synchrotron X‐ray diffraction technique,ex situ X‐ray absorption spectroscopy,and transmission electron microscopy.The experimental results,coupled with the density functional theory calculations,demonstrate that the electronic perturbation of the Ag frontier orbitals,induced by the Ag‐O interactions at the perimeter of the metal‐support interface,is the driving force of the top‐down process.The top‐down synthesis has two important functions:to increase the number of catalytic active sites and to facilitate the study of complex reaction mechanisms(e.g.,formaldehyde oxidation)by developing single‐site model catalysts.展开更多
文摘Ontogeny and metamorphic. development of female reproductive organs in Ephedra sinica Stapf were surveyed. At the end of April, female cones began to initialize from the vegetative buds. Pollination occurred in mid-May and seeds matured at the beginning of July. The ontogenetic pattern of female reproductive organs of E. sin ca is basically similar to that of E. distachya L. The foliar nature of the outer envelope of the ovule in Ephedra is corroborated. Reduction of ovule number as a tendency of speciation in the genus is substantiated by the occurrence of tri-ovulate cones coupled with comprehensive characters of the genus. The metamorphic patterns as well as the leaf nature of the outer envelope indicate that female cones of Ephedra are compound while the female reproductive units of the ovulate cone have been reduced from secondary reproductive shoots similar to those of cordaites by phylogenetic transformation, fusion and reduction. Each fertile bract together with its axillary female reproductive unit composed the Bract Scale and Seed Scale Complex of Ephedra.
基金supported by the National Natural Science Foundation of China(21477023)the Science and Technology Commission of Shanghai Municipality(14JC1400400)~~
文摘Top‐down synthesis has been used to prepare catalytic materials with nanometer sizes,but fabricating atomically dispersed metal catalysts remains a challenge because surface single metal atoms are prone to aggregation or coalescence.A top‐down strategy is used to synthesize atomically dispersed metal catalysts,based on supported Ag nanoparticles.The changes of the geometric and electronic structures of the Ag atoms during the top‐down process are studied using the in situ synchrotron X‐ray diffraction technique,ex situ X‐ray absorption spectroscopy,and transmission electron microscopy.The experimental results,coupled with the density functional theory calculations,demonstrate that the electronic perturbation of the Ag frontier orbitals,induced by the Ag‐O interactions at the perimeter of the metal‐support interface,is the driving force of the top‐down process.The top‐down synthesis has two important functions:to increase the number of catalytic active sites and to facilitate the study of complex reaction mechanisms(e.g.,formaldehyde oxidation)by developing single‐site model catalysts.