期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
一种基于卡尔曼滤波器的单级倒立摆的LQR方法 被引量:3
1
作者 侯岩松 李华 《兰州交通大学学报》 CAS 2005年第4期85-87,91,共4页
倒立摆的控制因其系统动态模型是非最小相位系统而很难用经典控制算法得到较好的控制效果.提出利用最优控制LQR方法来完成控制.由于利用最优控制,系统状态必须全部已知.考虑到系统噪声和量测噪声,根据分离性原理,利用LQR方法设计控制律... 倒立摆的控制因其系统动态模型是非最小相位系统而很难用经典控制算法得到较好的控制效果.提出利用最优控制LQR方法来完成控制.由于利用最优控制,系统状态必须全部已知.考虑到系统噪声和量测噪声,根据分离性原理,利用LQR方法设计控制律,利用卡尔曼状态估计来完成系统状态的重构.仿真结果显示该方法具有良好的控制效果. 展开更多
关键词 倒立摆 最优控制 卡尔曼状态估计
在线阅读 下载PDF
基于人工智能的机器人网络故障诊断算法分析
2
作者 肖洪莲 《电子产品世界》 2025年第1期64-67,共4页
针对机器人网络故障影响系统稳定性与可靠性的问题,探讨了基于人工智能的机器人网络故障诊断算法。首先,详细分析了智能机器人人机协作设计,建立了机器人网络数据安全模型,设计了机器人网络数据保护策略;其次,提出了结合门控循环神经网... 针对机器人网络故障影响系统稳定性与可靠性的问题,探讨了基于人工智能的机器人网络故障诊断算法。首先,详细分析了智能机器人人机协作设计,建立了机器人网络数据安全模型,设计了机器人网络数据保护策略;其次,提出了结合门控循环神经网络的机器人网络故障诊断算法;最后,通过收集机器人网络数据并建立相关数据集,得出了在故障检测方面具有较高准确性和可靠性的实验结果。结果表明,基于门控循环单元(gated recurrent unit,GRU)模型的故障诊断算法具有更高的准确性和稳定性。 展开更多
关键词 机器人网络 故障诊断算法 门控循环神经网络 无迹卡尔曼状态估计算法
在线阅读 下载PDF
基于自适应MPC的无人驾驶车辆轨迹跟踪控制 被引量:35
3
作者 梁忠超 张欢 +1 位作者 赵晶 王永富 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第6期835-840,共6页
根据自适应模型预测控制相关原理,设计一种无人驾驶车辆的轨迹跟踪控制策略.基于车辆动力学模型,建立轨迹跟踪控制器,并设计目标函数与相关约束,利用自适应MPC(model predictive control)控制算法对其进行求解.在每一个控制时刻工作点,... 根据自适应模型预测控制相关原理,设计一种无人驾驶车辆的轨迹跟踪控制策略.基于车辆动力学模型,建立轨迹跟踪控制器,并设计目标函数与相关约束,利用自适应MPC(model predictive control)控制算法对其进行求解.在每一个控制时刻工作点,不断更新卡尔曼状态估计器相关增益系数矩阵以及控制器的状态来适应无人驾驶车辆当前的工作环境,以此补偿车辆的非线性以及状态测量噪声带来的影响.在MATLAB中搭建仿真模型并进行仿真验证,得出自适应MPC对于无人驾驶车辆的轨迹跟踪拥有较好的控制精度与鲁棒性,验证了该算法应用在轨迹跟踪控制层的有效性,为轨迹跟踪控制的研究提供了参考. 展开更多
关键词 无人驾驶车辆 卡尔曼状态估计 自适应MPC 轨迹跟踪控制 MATLAB/SIMULINK
在线阅读 下载PDF
LINEAR FILTERING FOR VASICEK TERM STRUCTURE MODEL WITH SEQUENTIALLY CORRELATED NOISE
4
作者 吴姝 刘思峰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第3期309-314,共6页
When Kalman filter is used in the estimation of Vasicek term structure of interest rates,it is usual to assume that the measurement noise is uncorrelated.Study results are more favorable to the assumption of correlate... When Kalman filter is used in the estimation of Vasicek term structure of interest rates,it is usual to assume that the measurement noise is uncorrelated.Study results are more favorable to the assumption of correlated measurement noise.An augmented state Kalman filter form for Vasicek model is proposed to optimally estimate the unobservable state variable with the assumption of correlated measurement noise.Empirical results indicate that the model with sequentially correlated measurement noise can more accurately describe the dynamics of the term structure of interest rates. 展开更多
关键词 Vasicek term structure model augmented Kalman filter sequentially correlated noise state estimation
在线阅读 下载PDF
On-line Estimation in Fed-batch Fermentation Process Using State Space Model and Unscented Kalman Filter 被引量:13
5
作者 王建林 赵利强 于涛 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第2期258-264,共7页
On-line estimation of unmeasurable biological variables is important in fermentation processes,directly influencing the optimal control performance of the fermentation system as well as the quality and yield of the ta... On-line estimation of unmeasurable biological variables is important in fermentation processes,directly influencing the optimal control performance of the fermentation system as well as the quality and yield of the targeted product.In this study,a novel strategy for state estimation of fed-batch fermentation process is proposed.By combining a simple and reliable mechanistic dynamic model with the sample-based regressive measurement model,a state space model is developed.An improved algorithm,swarm energy conservation particle swarm optimization(SECPSO) ,is presented for the parameter identification in the mechanistic model,and the support vector machines(SVM) method is adopted to establish the nonlinear measurement model.The unscented Kalman filter(UKF) is designed for the state space model to reduce the disturbances of the noises in the fermentation process.The proposed on-line estimation method is demonstrated by the simulation experiments of a penicillin fed-batch fermentation process. 展开更多
关键词 on-line estimation simplified mechanistic model support vector machine particle swarm optimization unscented Kalman filter
在线阅读 下载PDF
Multi-objective optimization sensor node scheduling for target tracking in wireless sensor network 被引量:1
6
作者 文莎 Cai Zixing Hu Xiaoqing 《High Technology Letters》 EI CAS 2014年第3期267-273,共7页
Target tracking in wireless sensor network usually schedules a subset of sensor nodes to constitute a tasking cluster to collaboratively track a target.For the goals of saving energy consumption,prolonging network lif... Target tracking in wireless sensor network usually schedules a subset of sensor nodes to constitute a tasking cluster to collaboratively track a target.For the goals of saving energy consumption,prolonging network lifetime and improving tracking accuracy,sensor node scheduling for target tracking is indeed a multi-objective optimization problem.In this paper,a multi-objective optimization sensor node scheduling algorithm is proposed.It employs the unscented Kalman filtering algorithm for target state estimation and establishes tracking accuracy index,predicts the energy consumption of candidate sensor nodes,analyzes the relationship between network lifetime and remaining energy balance so as to construct energy efficiency index.Simulation results show that,compared with the existing sensor node scheduling,our proposed algorithm can achieve superior tracking accuracy and energy efficiency. 展开更多
关键词 wireless sensor network (WSN) target tracking sensor scheduling multi-objective optimization
在线阅读 下载PDF
Comparison of Linearized Kalman Filter and Extended Kalman Filter for Satellite Motion States Estimation 被引量:1
7
作者 杨亚非 《Journal of Measurement Science and Instrumentation》 CAS 2011年第4期307-311,共5页
The performance of the conventional Kalman filter depends on process and measurement noise statistics given by the system model and measurements.The conventional Kalman filter is usually used for a linear system,but i... The performance of the conventional Kalman filter depends on process and measurement noise statistics given by the system model and measurements.The conventional Kalman filter is usually used for a linear system,but it should not be used for estimating the state of a nonlinear system such as a satellite motion because it is difficult to obtain the desired estimation results.The linearized Kalman filtering approach and the extended Kalman filtering approach have been proposed for a general nonlinear system.The equations of satellite motion are described.The satellite motion states are estimated,and the relevant estimation errors are calculated through the estimation algorithms of the both above mentioned approaches implemented in Matlab are estimated.The performances of the extended Kalman filter and the linearized Kalman filter are compared.The simulation results show that the extended Kalman filter is much better than the linearized Kalman filter at the aspect of estimation effect. 展开更多
关键词 nonlinear filtering approach nonlinear system satellite orbit state space state estimation
在线阅读 下载PDF
Nonlinear state estimation for fermentation process using cubature Kalman filter to incorporate delayed measurements 被引量:1
8
作者 赵利强 王建林 +2 位作者 于涛 陈坤云 刘唐江 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第11期1801-1810,共10页
State estimation of biological process variables directly influences the performance of on-line monitoring and op- timal control for fermentation process. A novel nonlinear state estimation method for fermentation pro... State estimation of biological process variables directly influences the performance of on-line monitoring and op- timal control for fermentation process. A novel nonlinear state estimation method for fermentation process is proposed using cubature Kalman filter (CKF) to incorporate delayed measurements. The square-root version of CI(F (SCKF) algorithm is given and the system with delayed measurements is described. On this basis, the sample-state augmentation method for the SCKF algorithm is provided and the implementation of the proposed algorithm is constructed. Then a nonlinear state space model for fermentation process is established and the SCKF algorithm incorporating delayed measurements based on fermentation process model is presented to implement the nonlinear state estimation. Finally, the proposed nonlinear state estimation methodology is applied to the state estimation for penicillin and industrial yeast fermentation processes. The simulation results show that the on-fine state estimation for fermentation process can be achieved by the proposed method with higher esti- mation accuracy and better stability. 展开更多
关键词 Nonlinear state estimationFermentation processCubature Kalman filterDelayed measurementsSample-state augmentation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部