精密单点定位(precise point positioning,PPP)技术能够在全球区域获取用户在国际地球参考框架下的精确三维坐标,打破了以往只能够使用差分定位技术才能够实现高精度定位的局面,是继RTK/NRTK技术之后出现的又一次技术革命。论文旨在构...精密单点定位(precise point positioning,PPP)技术能够在全球区域获取用户在国际地球参考框架下的精确三维坐标,打破了以往只能够使用差分定位技术才能够实现高精度定位的局面,是继RTK/NRTK技术之后出现的又一次技术革命。论文旨在构建实时GNSS PPP服务系统,围绕GNSS卫星钟差估计、多系统融合PPP、卫星姿态、GPS未校准相位延迟(uncalibrated phase delays,UPD)估计、PPP模糊度固定等展开研究,为用户获取实时、高精度和高可靠性的GNSS PPP服务奠定理论和实践基础。展开更多
We present two efficient approaches,namely the epoch-differenced(ED) and satellite-and epoch-differenced(SDED) approaches,for the estimation of IFCBs of the two Block IIF satellites.For the analysis,data from 18 stati...We present two efficient approaches,namely the epoch-differenced(ED) and satellite-and epoch-differenced(SDED) approaches,for the estimation of IFCBs of the two Block IIF satellites.For the analysis,data from 18 stations from the IGS network spanning 96 d is processed.Results show that the IFCBs of PRN25 and PRN01 exhibit periodical signal of one orbit revolution with a magnitude up to 18 cm.The periodical variation of the IFCBs is modeled by a sinusoidal function of the included angle between the sun,earth and the satellite.The presented model enables a consistent use of L1/L2 clock products in L1/L5-based positioning.The algorithm is incorporated into the MGPSS software at SHAO(Shanghai Astronomical Observatory,Chinese Academy of Sciences) and is used to monitor the IFCB variation in near real-time.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 41204034,41174023 and 11173049)the Opening Project of Shanghai Key Laboratory of Space Navigation and Position Techniques (Grant No. Y224 353002)
文摘We present two efficient approaches,namely the epoch-differenced(ED) and satellite-and epoch-differenced(SDED) approaches,for the estimation of IFCBs of the two Block IIF satellites.For the analysis,data from 18 stations from the IGS network spanning 96 d is processed.Results show that the IFCBs of PRN25 and PRN01 exhibit periodical signal of one orbit revolution with a magnitude up to 18 cm.The periodical variation of the IFCBs is modeled by a sinusoidal function of the included angle between the sun,earth and the satellite.The presented model enables a consistent use of L1/L2 clock products in L1/L5-based positioning.The algorithm is incorporated into the MGPSS software at SHAO(Shanghai Astronomical Observatory,Chinese Academy of Sciences) and is used to monitor the IFCB variation in near real-time.