期刊文献+
共找到62篇文章
< 1 2 4 >
每页显示 20 50 100
融合结构化卷积和双重注意力机制的轻量级眼底图像分割网络 被引量:1
1
作者 汪华登 刘金 +4 位作者 黎兵兵 潘细朋 刘振丙 蓝如师 罗笑南 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第5期760-774,共15页
眼底血管图像的自动分割对于多种眼科疾病的计算机辅助诊断具有重要作用.针对血管的尺度差异和图像噪声导致眼底血管图像分割困难、使用单一尺度卷积运算的深度学习方法获取的特征感受野有限,以及现有的方法复杂度过高的问题,提出一个... 眼底血管图像的自动分割对于多种眼科疾病的计算机辅助诊断具有重要作用.针对血管的尺度差异和图像噪声导致眼底血管图像分割困难、使用单一尺度卷积运算的深度学习方法获取的特征感受野有限,以及现有的方法复杂度过高的问题,提出一个融合结构化卷积和双重注意力机制的轻量级眼底图像分割网络.通过编码器增强、减少下采样次数和特征深度的编码-解码网络设计,实现参数量只有0.63M的轻量化网络.在编码阶段,提出一种结构化卷积方法,有效地避免了网络训练过拟合,提高了网络捕获差异化血管特征的能力;在解码阶段,采用基于空间和通道的双重注意力机制,使网络更加关注血管特征的上下文和几何空间信息,抑制病变等噪声的干扰.在DRIVE,CHASE_DB1和STARE数据集上进行实验的结果表明,所提网络图像分割的准确率分别为96.92%,97.57%和97.51%,灵敏度分别为83.68%,84.99%和84.87%,受试者曲线下的面积(AUC)分别为98.67%,99.05%和99.02%;并通过在DRIVE和STARE数据集上的交叉训练,验证了该网络的泛化能力. 展开更多
关键词 眼底图像分割 编码-解码网络 轻量级网络 结构化卷积 双重注意力机制
在线阅读 下载PDF
基于WGAN-GP和高效卷积块注意力机制IPOA-ICNN的变压器故障诊断
2
作者 鲍克勤 谈浩冬 《水电能源科学》 北大核心 2024年第10期190-195,共6页
针对目前变压器故障诊断采集到的故障样本存在数据不平衡、特征信息提取不足的问题,提出了一种基于数据增强型和高效卷积块注意力机制(ECBAM)优化一维改进卷积神经网络(1D-ICNN)的变压器故障诊断方法。首先,建立一个基于Wasserstein梯... 针对目前变压器故障诊断采集到的故障样本存在数据不平衡、特征信息提取不足的问题,提出了一种基于数据增强型和高效卷积块注意力机制(ECBAM)优化一维改进卷积神经网络(1D-ICNN)的变压器故障诊断方法。首先,建立一个基于Wasserstein梯度惩罚生成对抗网络(WGAN-GP),对不平衡的变压器数据样本进行训练以生成合成样本,用于数据增强,并采用方差分析法选取关联性强的气体特征参量;其次,使用残差和高效卷积块注意力机制模块对重构的平衡样本进行更为细节的特征提取,以实现故障诊断网络的分类;最后,利用改进的鹈鹕优化算法(IPOA)对ICNN参数进行寻优。算例对比分析表明,所提算法的故障诊断性能具备更高的精确度和稳定性,验证了所提模型故障诊断分类性能的有效性。 展开更多
关键词 变压器故障诊断 数据增强 高效卷积注意力机制 鹈鹕优化算法
在线阅读 下载PDF
基于双重注意力机制-改进Inception模块的CNN模型识别框架结构损伤
3
作者 刘景良 吕毓霖 +2 位作者 郑文婷 廖飞宇 陈宗燕 《振动与冲击》 EI CSCD 北大核心 2024年第23期321-328,336,共9页
针对传统深度学习方法的网络隐含层和参数异常庞大且训练时间较长的特点,提出了一种基于双重注意力机制和改进Inception模块的卷积神经网络(convolutional neural network,CNN)模型来识别框架结构损伤。首先,通过局部最大值同步挤压变... 针对传统深度学习方法的网络隐含层和参数异常庞大且训练时间较长的特点,提出了一种基于双重注意力机制和改进Inception模块的卷积神经网络(convolutional neural network,CNN)模型来识别框架结构损伤。首先,通过局部最大值同步挤压变换将结构的振动响应信号转化为二维时频图并作为卷积神经网络的输入,然后基于改进Inception模块搭建二维卷积神经网络,最后通过双重注意力机制增强相关度高的损伤特征从而成功识别结构的损伤位置和损伤程度。通过IASC-ASCE SHM Benchmark结构I阶段数值模拟数据和卡塔尔大学看台模拟器数据集验证所提方法的有效性,研究结果表明:该方法不仅可以减少模型参数的个数和加快模型收敛速度,而且在面对框架结构多类别损伤识别问题时具有较高的准确率和较强的抗噪性能。 展开更多
关键词 双重注意力机制 局部最大同步挤压变换 卷积神经网络(CNN) 损伤识别 框架结构
在线阅读 下载PDF
基于双重注意力机制的人群计数方法
4
作者 赵志强 马培红 黑新宏 《计算机应用》 CSCD 北大核心 2024年第9期2886-2892,共7页
针对复杂场景下人群计数问题中的尺度变化、背景干扰和部分遮挡等问题,在空洞卷积操作的基础上,提出一种基于双重注意力机制的空洞上下文卷积神经网络(DA-DCCNN)。首先,将VGG16中的卷积层作为特征提取器,获取人群图像抽象、深层的特征图... 针对复杂场景下人群计数问题中的尺度变化、背景干扰和部分遮挡等问题,在空洞卷积操作的基础上,提出一种基于双重注意力机制的空洞上下文卷积神经网络(DA-DCCNN)。首先,将VGG16中的卷积层作为特征提取器,获取人群图像抽象、深层的特征图;其次,利用空洞卷积构造空洞上下文模块(DCM)对不同层获取的特征进行连接,并引入空间注意力模块(SAM)和通道注意力模块(CAM)获取上下文信息;最后,组合欧氏距离和交叉熵构造损失函数,对网络预测注意力图和真实注意力图之间的差异进行度量。在ShanghaiTech、UCF_CC_50和UCF-QNRF 3个公开数据集上的实验结果表明,DA-DCCNN在有效获取图像的多尺度特征的同时,增强了对图像中重要区域和通道的感知能力,平均绝对误差(MAE)取得了相对最优的结果。基于双重注意力机制的特征融合网络能有效感知图像中的空间结构和局部特征,从而使得生成的密度图能更准确地对人群区域进行预测和计数。 展开更多
关键词 空洞卷积 上下文特征 双重注意力机制 密度图 人群计数
在线阅读 下载PDF
基于集成改进卷积注意力块的SAR图像目标分类算法 被引量:1
5
作者 孙靖森 李宗豫 +3 位作者 杨森 钟芝怡 艾加秋 史骏 《海军航空大学学报》 2024年第4期445-452,共8页
在合成孔径雷达(Synthetic Aperture Radar,SAR)图像中,目标的轮廓和细节通常比较复杂。传统的卷积神经网络(Convolutional Neural Network,CNN)只使用单一均值参数进行无差别的特征提取,不能很好地区分SAR特征之间的差异。为了解决此问... 在合成孔径雷达(Synthetic Aperture Radar,SAR)图像中,目标的轮廓和细节通常比较复杂。传统的卷积神经网络(Convolutional Neural Network,CNN)只使用单一均值参数进行无差别的特征提取,不能很好地区分SAR特征之间的差异。为了解决此问题,文章提出了1种基于集成改进卷积注意力块(Improved Convolutional Block Attention Module,ICBAM)的SAR图像目标分类算法ICBAM_CNN。首先,该模块通过引入方差参数至传统CBAM模块中,设计了1种改进的CBAM注意力机制,有助于分类识别网络更好地学习SAR图像不同目标卷积层输出与通道注意力之间的差异信息,提升不同SAR目标特征的可分离性;然后,ICBAM设计了1种中心坐标注意力机制,能更好地捕捉SAR图像中目标的中心分布特征,有效抑制杂波对SAR目标分类影像的干扰;最后,为了提高效率,将改进后的ICBAM模块集成到CNN网络中,实现SAR图像目标分类。ICBAM_CNN深度融合了SAR图像目标的多层级特征,提升了SAR目标特征的可分离性,可实现SAR图像目标的高精度、高效率识别分类。通过MSTAR数据集进行实验,结果表明,相比于传统CBAM方法,改进ICBAM方法的精确率提升了2.44%,召回率提升了2.24%,F1-score提升了2.34%。 展开更多
关键词 SAR图像目标分类 改进卷积注意力 集成ICBAM的CNN网络 中心坐标注意力机制 多层级特征融合
在线阅读 下载PDF
基于双重注意力机制的皮肤病变图像分割算法
6
作者 邝先验 陈奕希 +1 位作者 刘平 张建华 《计算机应用与软件》 北大核心 2024年第11期261-267,共7页
针对黑素瘤存在难以分割,毛发遮挡时分割效果不佳,提出一种基于双重注意力机制的皮肤病变图像分割神经网络。模型共有两个解码路径与一个编码路径。首先将图像经过预处理与数据增强后采用ResNet50主干提取网络获得不同分辨率大小的特征... 针对黑素瘤存在难以分割,毛发遮挡时分割效果不佳,提出一种基于双重注意力机制的皮肤病变图像分割神经网络。模型共有两个解码路径与一个编码路径。首先将图像经过预处理与数据增强后采用ResNet50主干提取网络获得不同分辨率大小的特征层,再通过首个编码路径,对提取的最后一层特征层进行上采样后与之前提取的特征层进行特征融合,随后进入接下来的编码解码路径,最后通过RAB空间与通道注意力模块得到最终输出。在ISBI2016皮肤病变图像数据集上进行多次对比与消融实验,实验结果表明对于被毛发或其他物体遮挡的图像有着优秀分割结果。实验各项指标分别为准确率96.19%、敏感度93.32%、特异性97.32%、Dice系数93.26%和Jaccard系数87.36%,均优于现有算法。 展开更多
关键词 黑素瘤 双重注意力机制 卷积神经网络 图像分割
在线阅读 下载PDF
基于融合注意力机制深度网络的半色调图像分类
7
作者 李梅 许宝卉 +1 位作者 刘琦 王新海 《运城学院学报》 2024年第3期55-60,共6页
现有的半色调图像分类方法存在着识别半色调图像类型较少、分类准确率较低等问题。为了进一步提高半色调图像的分类准确率,本文提出一种基于融合注意力机制深度网络的半色调图像分类方法。首先,应用稠密残差块深度提取半色调图像信息,... 现有的半色调图像分类方法存在着识别半色调图像类型较少、分类准确率较低等问题。为了进一步提高半色调图像的分类准确率,本文提出一种基于融合注意力机制深度网络的半色调图像分类方法。首先,应用稠密残差块深度提取半色调图像信息,并应用通道注意力机制提取不同通道间的半色调图像噪点分布特征;然后,应用空间注意力机制提取不同通道不同空间下半色调图像噪点之间的关系;最后,应用分类器对识别到的半色调图像噪点分布特征进行分类,从而实现对半色调图像的分类。实验结果表明,运用基于融合注意力机制深度网络的半色调分类方法可以以99.72%的准确率、0.9971的F1分数实现14类半色调图像的分类。与其他方法相比,本文提出的方法在半色调图像分类准确率上提高了0.14%~0.24%,在F1分数上提高了0.0014。该方法可以以最高的准确率实现最多类型的半色调图像的分类。 展开更多
关键词 图像分类 半色调图像 稠密残差 注意力机制 卷积网络
在线阅读 下载PDF
基于混合空洞卷积和注意力多尺度网络的残饵密度估计
8
作者 张丽珍 李延天 +3 位作者 李志坚 孟雄栋 张永琪 吴迪 《农业工程学报》 EI CAS CSCD 北大核心 2024年第14期137-145,共9页
及时、准确地估算饵料盘中残留饲料量是提高养殖效益的重要措施。针对虾类养殖场景下残饵检测模型复杂度高、计数精度低的问题,提出了一种基于混合空洞卷积和注意力多尺度网络(hybrid dilated convolution and attention multi-scale ne... 及时、准确地估算饵料盘中残留饲料量是提高养殖效益的重要措施。针对虾类养殖场景下残饵检测模型复杂度高、计数精度低的问题,提出了一种基于混合空洞卷积和注意力多尺度网络(hybrid dilated convolution and attention multi-scale network,HAMNet)的残饵密度估计方法。首先,借鉴MCNN(multi-column convolutional neural network)多列架构的思想设计并行卷积块(parallel convolution block,PCB),使网络在单列架构中提取多种尺度的残饵特征,简化了网络结构并减轻了计算量;同时为了弥补网络结构简化造成残饵特征表示能力略有不足的问题,引入混合空洞卷积块(hybrid dilated convolution block,HDCB)避免信息丢失并增大感受野,增强模型深入挖掘多尺度残饵信息的能力。其次,在网络中嵌入通道注意力机制(channel attention mechanism,CAM),利用通道之间的相互依赖性重新校准有用特征信息的权重,凸显目标与背景的差异性。最后,针对下采样导致密度图质量差的问题,应用可学习的转置卷积恢复特征图细节信息,进而提升模型计数性能。利用饵料盘条件下采集的残饵图像进行了验证,试验结果表明,与基准模型MCNN相比,HAMNet模型的平均绝对误差、均方根误差和计算量分别降低了44.4%、40.8%和13.7%,参数量仅为0.52 MB。与经典密度估计模型CMTL(cascaded multi-task learning)、SANet(scale aggregation network)、CSRNet(congested scene recognition network)相比,该模型在各项性能指标上保持了最佳平衡,明显处于优势。该研究可为人工智能在水产养殖中快速量化残饵提供参考。 展开更多
关键词 水产养殖 模型 残饵 密度估计 并行卷积 混合空洞卷积 通道注意力机制 转置卷积
在线阅读 下载PDF
基于双重注意力和分层感知表征的IQA方法 被引量:1
9
作者 史再峰 佟博文 +2 位作者 孔凡宁 康泰 罗韬 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2024年第3期234-243,共10页
图像质量评价在图像处理领域有着广泛的应用.基于深度学习的方法以多通道特征的形式获取图像信息,但在特征下采样过程中会丢失局部空间细节,导致对于图像信息的表征能力不足.针对以上问题,本文基于人类视觉系统的分层感知机制,提出了一... 图像质量评价在图像处理领域有着广泛的应用.基于深度学习的方法以多通道特征的形式获取图像信息,但在特征下采样过程中会丢失局部空间细节,导致对于图像信息的表征能力不足.针对以上问题,本文基于人类视觉系统的分层感知机制,提出了一种全参考图像质量评价方法,采用Siamese结构的卷积神经网络实现非线性映射,从不同尺度和视觉复杂度表征图像信息,并通过双重注意力模拟人类在评价图像质量时对视觉注意力的调控过程.此方法在特征提取阶段引入空间注意力机制,对特征图的二维空间位置赋以权重,计算人在感知图像失真信息时对空间区域的注意力差别.在特征融合阶段利用分组通道注意力模块显式建模通道间的依赖关系,对感知差异特征进行自适应的校准,使网络关注对于图像质量评价影响大的通道特征.实验结果表明,该方法在LIVE、TID2013和CSIQ 3个公开数据集上的斯皮尔曼相关系数分别达到0.975、0.938和0.963,在应对复杂失真类型图像时的性能提升显著,与人类主观评价的一致性良好. 展开更多
关键词 图像质量评价 卷积神经网络 双重注意力机制 分层感知表征
在线阅读 下载PDF
基于注意力机制的卷积神经网络人脸表情识别 被引量:5
10
作者 亢洁 李思禹 《陕西科技大学学报》 CAS 2020年第4期159-165,171,共8页
现有的卷积神经网络规模越来越大,导致参数量过大,结构不够轻量,并且现有的网络难以识别人脸表情的细微变化,不能对人脸表情特征进行精确提取,表情识别性能有待提高.针对以上问题,提出了一种基于注意力机制的卷积神经网络表情识别方法.... 现有的卷积神经网络规模越来越大,导致参数量过大,结构不够轻量,并且现有的网络难以识别人脸表情的细微变化,不能对人脸表情特征进行精确提取,表情识别性能有待提高.针对以上问题,提出了一种基于注意力机制的卷积神经网络表情识别方法.该方法设计了一种新的网络结构,网络在卷积层的基础上增加了残差恒等块,同时引入注意力模块(Spatial Group-wise Enhance module,SGE),有效缓解了网络的过拟合现象,丰富了人脸表情特征学习,并利用全局特征和局部特征的相似性来指导语义特征的空间分布,使每个特征组自主增强人脸表情的特征学习.该网络结构较为轻量,参数量较少.在RAF-DB和CK+数据集上的实验结果表明,该方法有效改善了人脸表情识别的性能. 展开更多
关键词 卷积神经网络 人脸表情识别 注意力机制 残差恒等
在线阅读 下载PDF
基于注意力机制的U-Net叶片缺陷图像分割
11
作者 祁雷 李宁 +2 位作者 梁伟 王峥 刘子梁 《中国安全科学学报》 CAS CSCD 北大核心 2024年第5期139-146,共8页
为解决风力发电机叶片表面缺陷检测存在分类困难和微小缺陷分割模糊的难题,构建一种基于扩张卷积和卷积注意力模块的改进U-Net语义分割网络。该网络基于网络模型的编码-解码结构,使用可迁移的VGG16的特征提取层代替U-Net网络的编码部分... 为解决风力发电机叶片表面缺陷检测存在分类困难和微小缺陷分割模糊的难题,构建一种基于扩张卷积和卷积注意力模块的改进U-Net语义分割网络。该网络基于网络模型的编码-解码结构,使用可迁移的VGG16的特征提取层代替U-Net网络的编码部分,在编码-解码之间的跳跃模块加入卷积注意力模块。通过对微小缺陷信息选取加强全局权重,使用扩张卷积增强网络特征,采用VGG16预训练模型实现迁移学习。开展Focal与Dice结合的混合损失函数验证,对比分析DeeplabV3+、PSPnet、HRNet、U-Net这4种模型。结果表明:对于叶片缺陷数据集,改进的U-Net网络模型对叶片缺陷的分类和分割任务具有更高的精度,均交并比、均像素精度和召回率等指标值分别为83.60%、92.84%和88.50%。改进U-Net网络的均交并比值比DeeplabV3+模型高13.98%,比标准U-Net模型高9.38%,能够提高叶片缺陷检测的灵敏度,有效降低检测结果的误报警率,有助于准确检测风机叶片缺陷。 展开更多
关键词 注意力机制 U-Net网络 风机叶片缺陷 图像分割 语义分割 迁移学习 卷积注意力(CBAM)
在线阅读 下载PDF
KMeans++与注意力机制融合的苹果叶片病害识别方法
12
作者 黄贻望 王国帅 +1 位作者 毛志 刘声 《江苏农业科学》 北大核心 2024年第20期190-198,共9页
为解决复杂环境下小尺度苹果叶片病害识别精度不高、鲁棒性不强的问题,在YOLO v5s的基础上提出一种新的改进方法。该方法首先在模型训练之前使用KMeans++聚类算法生成更接近真实框的锚框;其次在骨干网络中加入卷积块注意几模块(convolut... 为解决复杂环境下小尺度苹果叶片病害识别精度不高、鲁棒性不强的问题,在YOLO v5s的基础上提出一种新的改进方法。该方法首先在模型训练之前使用KMeans++聚类算法生成更接近真实框的锚框;其次在骨干网络中加入卷积块注意几模块(convolutional block attention module,CBAM),来提升复杂环境下小目标特征的提取能力;再次为了增强颈部网络对不同大小病害多尺度特征的有效识别,选择ConvNeXtBlock模块替换C3(CSP bottleneck with 3 convolutions)模块,并在颈部网络中融入坐标注意力模块(coordinate attention,CA),来加强模型对关键空间位置的响应,使得不同尺度的特征都能被更有效地利用;最后使用ECIoU损失函数替换原始的CIoU损失函数,来提高模型的收敛速度和精度。与Faster R-CNN、SSD、YOLO v5s、YOLO v7、YOLO v8目标检测模型相比,改进后模型的平均精度均值(mean average precision,mAP 0.5)值分别提升0.6、4.6、6.3、1.7、1.3百分点,同时在强光照、模糊、暗光的复杂场景下具有较强的鲁棒性。该模型可以为复杂环境下苹果叶片病害的识别提供行之有效的方案。 展开更多
关键词 苹果 叶片病害 病害检测 注意力机制 ConvNeXtBlock 卷积注意力(CBAM) CA
在线阅读 下载PDF
基于注意力机制轻量化模型的植物病害识别方法
13
作者 苏航 陈旭昊 +3 位作者 寿德荣 张朝阳 许彪 孙丙宇 《江苏农业学报》 CSCD 北大核心 2024年第8期1389-1399,共11页
针对现有植物病害识别模型存在响应速度慢、参数量多、计算机内存资源消耗大等问题,本研究提出了一种轻量化神经网络模型,该模型由特征提取层、特征增强层和分类器组成。为了减小模型大小并提高网络响应速度,在特征提取层中使用深度可... 针对现有植物病害识别模型存在响应速度慢、参数量多、计算机内存资源消耗大等问题,本研究提出了一种轻量化神经网络模型,该模型由特征提取层、特征增强层和分类器组成。为了减小模型大小并提高网络响应速度,在特征提取层中使用深度可分离卷积进行特征提取。为了防止网络传播过程中的梯度消失并增强病害像素特征融合,在特征提取层中引入了大卷积核倒置残差结构(IRBCKS)模块。此外,在特征增强层集成了轻量级卷积块注意力模块(CBAM)注意力机制,以捕捉植物病害相关图像中像素之间的关系,增强关键信息的提取。最后,采用剪枝技术剔除模型中冗余特征信息,从而再次减少模型参数量,形成最终的轻量级网络模型Cut-MobileNet。为验证该模型的先进性,将其与轻量化模型(MobileNet V2、SqueezeNet、GoogLeNet)和非轻量化模型(Vision Transformer、AlexNet)进行性能对比,研究结果表明,Cut-MobileNet在浮点运算量、准确率、单张图片推理时间、参数量、F1值和模型大小等性能指标上都取得了较优的效果。 展开更多
关键词 模型剪枝 卷积注意力(CBAM)注意力机制 卷积核倒置残差结构(IRBCKS)模 植物病害 轻量化网络
在线阅读 下载PDF
基于可变形卷积和注意力机制的图像去噪算法
14
作者 许光宇 付海超 《合肥学院学报(综合版)》 2022年第5期79-87,共9页
为了增强图像的去噪效果和同时最大限度的保留图像的细节信息,提出了一种有效的图像去噪算法,该算法引入可变形卷积,并与扩张卷积、普通卷积组成“混合稀疏块”来完成主要的去噪任务。采用双重注意力机制,让网络能够关注到更多的重要信... 为了增强图像的去噪效果和同时最大限度的保留图像的细节信息,提出了一种有效的图像去噪算法,该算法引入可变形卷积,并与扩张卷积、普通卷积组成“混合稀疏块”来完成主要的去噪任务。采用双重注意力机制,让网络能够关注到更多的重要信息,从而能挖掘到更深层次下的噪声信息;将网络设计成残差结构并在网络深处使用并行结构,以缓解梯度消失、训练缓慢等问题。实验结果证明,该算法与其他去噪算法相比,去噪表现优异且能更好的保留图像细节信息,拥有更高的数据评价指标,体现了更好的鲁棒性。 展开更多
关键词 图像去噪 可变形卷积 混合稀疏 双重注意力机制
在线阅读 下载PDF
基于注意力机制和残差块的真实图像去噪 被引量:2
15
作者 周联敏 周冬明 《计算机工程与设计》 北大核心 2023年第5期1451-1458,共8页
为有效去除真实图像噪声,提出一种基于注意力机制和残差块的图像去噪算法。采用通道和空间注意力机制相结合的双重注意力模块给不同的特征赋予权重,并与残差块合并于编解码结构;应用增大感受野模块,在保护图像结构的同时增大感受野;整... 为有效去除真实图像噪声,提出一种基于注意力机制和残差块的图像去噪算法。采用通道和空间注意力机制相结合的双重注意力模块给不同的特征赋予权重,并与残差块合并于编解码结构;应用增大感受野模块,在保护图像结构的同时增大感受野;整体架构采用密集特征融合保留更多细节。实验结果表明,该算法在SIDD和DND数据集的峰值信噪比分别达到了39.59 dB和39.73 dB,结构相似性分别达到了0.911%和0.953%,具有最佳视觉效果。所提算法在去噪的同时能够保留更多图像细节信息。 展开更多
关键词 图像去噪 真实噪声 深度学习 注意力机制 残差 卷积神经网络 空洞卷积
在线阅读 下载PDF
基于注意力的热点块和显著像素卷积神经网络的人脸防伪方法 被引量:2
16
作者 吴晓丽 胡伟 《计算机科学》 CSCD 北大核心 2021年第4期316-324,共9页
人脸防伪用于验证被测试者是否为真实活体,是计算机视觉领域的一个研究热点。攻击手段的多样性以及人脸识别主要在嵌入式、移动式等不具备高计算能力的设备上应用,使得快速有效的人脸防伪计算成为具有挑战性的任务。针对该问题,文中提... 人脸防伪用于验证被测试者是否为真实活体,是计算机视觉领域的一个研究热点。攻击手段的多样性以及人脸识别主要在嵌入式、移动式等不具备高计算能力的设备上应用,使得快速有效的人脸防伪计算成为具有挑战性的任务。针对该问题,文中提出了一种基于注意力的热点块和显著像素卷积神经网络的方法。其中,热点块机制以对5个热点块的判别来取代对整张人脸的判别,显著降低了计算量,迫使网络模型集中关注更具有鉴别信息的热点块,提高了网络模型的准确率;显著像素方法对输入的人脸图像进行显著像素预测,通过判断显著预测图是否符合人脸的深度特性来鉴别活体与攻击。该方法将热点块与显著像素的结果进行融合,充分发挥了局部特征和全局特征的作用,进一步提升了人脸防伪的效果。与现有方法相比,所提方法在CASIA-MFSD、Replay-Attack以及SiW数据集上都达到了很好的效果。 展开更多
关键词 人脸防伪 活体检测 注意力机制 热点 显著像素 卷积神经网络
在线阅读 下载PDF
引入卷积块注意力模块的YOLOv5网络在地铁车辆一系弹簧断裂检测中的应用
17
作者 江现昌 邹庆春 +1 位作者 李翔泽 王静 《铁道技术监督》 2023年第10期29-33,共5页
作为地铁车辆关键部件的一系弹簧会发生断裂,威胁列车运行安全。由于一系弹簧断裂的位置、形状不同,并且断裂位置常常被遮挡,使得采用目标检测方法检测时,目标面积较小。对于小目标,采用的基于深度学习的目标检测方法检测难以达到好的... 作为地铁车辆关键部件的一系弹簧会发生断裂,威胁列车运行安全。由于一系弹簧断裂的位置、形状不同,并且断裂位置常常被遮挡,使得采用目标检测方法检测时,目标面积较小。对于小目标,采用的基于深度学习的目标检测方法检测难以达到好的效果。针对这一问题,在YOLOv5网络的基础上加以改进,加入更小的初始检测锚框,并且在主干网络加入空间和通道注意力模块。对比试验结果表明,改进后平均准确率提高3%,有效提高了小目标的检测能力。 展开更多
关键词 地铁动车组 转向架 一系弹簧 YOLOv5算法 卷积注意力 注意力机制 目标检测
在线阅读 下载PDF
基于混合注意力机制的动态人脸表情识别 被引量:3
18
作者 刘希未 宫晓燕 +4 位作者 赵红霞 边思宇 邵帅 戴亚平 代文鑫 《计算机应用》 CSCD 北大核心 2023年第S01期1-7,共7页
针对自然环境中存在人脸遮挡、姿势变化等复杂因素,以及卷积神经网络(CNN)中的卷积滤波器由于空间局部性无法学习大多数神经层中不同面部区域之间的长程归纳偏差的问题,提出一种用于动态人脸表情识别(DFER)的混合注意力机制模型(HA-Mode... 针对自然环境中存在人脸遮挡、姿势变化等复杂因素,以及卷积神经网络(CNN)中的卷积滤波器由于空间局部性无法学习大多数神经层中不同面部区域之间的长程归纳偏差的问题,提出一种用于动态人脸表情识别(DFER)的混合注意力机制模型(HA-Model),以提升DFER的鲁棒性和准确性。HA-Model由空间特征提取和时序特征处理两部分组成:空间特征提取部分通过两种注意力机制——Transformer和包含卷积块注意力模块(CBAM)的网格注意力模块,引导网络从空间角度学习含有遮挡、姿势变化的鲁棒面部特征并关注人脸局部显著特征;时序特征处理部分通过Transformer引导网络学习高层语义特征的时序联系,用于学习人脸表情特征的全局表示。实验结果表明,HA-Model在DFEW和AFEW基准上的准确率分别达到了67.27%和50.41%,验证了HA-Model可以有效提取人脸特征并提升动态人脸表情识别的精度。 展开更多
关键词 动态人脸表情识别 深度学习 卷积神经网络 注意力机制 TRANSFORMER 卷积注意力
在线阅读 下载PDF
混合注意力机制的异常行为识别 被引量:4
19
作者 孙晓虎 余阿祥 +1 位作者 申栩林 李洪均 《计算机工程与应用》 CSCD 北大核心 2023年第5期140-147,共8页
随着人工智能的快速发展,基于计算机视觉的人体异常行为识别受到极大的关注,并被广泛应用到智能安防等领域。针对人们在加油站等重要场所抽烟以及司机驾驶途中打电话等违规行为,提出一种混合注意力机制的异常行为识别方法。利用引入的... 随着人工智能的快速发展,基于计算机视觉的人体异常行为识别受到极大的关注,并被广泛应用到智能安防等领域。针对人们在加油站等重要场所抽烟以及司机驾驶途中打电话等违规行为,提出一种混合注意力机制的异常行为识别方法。利用引入的卷积块注意力模块重点关注输入对象的显著性特征,并对输入信息进行精细化的分配和处理,在突出重要信息的同时弱化无关信息。为提升网络模型的特征挖掘能力及增强网络的信息交互性,利用提出的卷积特征提取模块进一步提取识别对象的高层语义特征,并将其与低层细节特征进行融合以达到多尺度特征交互的目的。此外,为了减少网络训练过程中错误标签造成的损失,采用标签平滑对交叉熵损失函数进行修正以此来驱动模型的学习过程。实验结果表明,所提出的模型优于当前的主流网络,可有效检测出异常行为。 展开更多
关键词 异常行为检测 注意力机制 卷积注意力 卷积特征提取模 标签平滑
在线阅读 下载PDF
基于多通道注意力机制的图像超分辨率重建网络 被引量:1
20
作者 张晔 刘蓉 +1 位作者 刘明 陈明 《计算机应用》 CSCD 北大核心 2022年第5期1563-1569,共7页
针对现有的图像超分辨率重建方法存在生成图像纹理扭曲、细节模糊等问题,提出了一种基于多通道注意力机制的图像超分辨率重建网络。首先,该网络中的纹理提取模块通过设计多通道注意力机制并结合一维卷积实现跨通道的信息交互,以关注重... 针对现有的图像超分辨率重建方法存在生成图像纹理扭曲、细节模糊等问题,提出了一种基于多通道注意力机制的图像超分辨率重建网络。首先,该网络中的纹理提取模块通过设计多通道注意力机制并结合一维卷积实现跨通道的信息交互,以关注重要特征信息;然后,该网络中的纹理恢复模块引入密集残差块来尽可能恢复部分高频纹理细节,从而提升模型性能并产生优质重建图像。所提网络不仅能够有效提升图像的视觉效果,而且在基准数据集CUFED5上的结果表明所提网络与经典的基于卷积神经网络的超分辨率重建(SRCNN)方法相比,峰值信噪比(PSNR)和结构相似度(SSIM)分别提升了1.76 dB和0.062。实验结果表明,所提网络可提高纹理迁移的准确性,并有效提升生成图像的质量。 展开更多
关键词 图像超分辨率重建 纹理迁移 注意力机制 一维卷积 密集残差
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部