期刊文献+
共找到261篇文章
< 1 2 14 >
每页显示 20 50 100
基于WGAN-GP和高效卷积块注意力机制IPOA-ICNN的变压器故障诊断
1
作者 鲍克勤 谈浩冬 《水电能源科学》 北大核心 2024年第10期190-195,共6页
针对目前变压器故障诊断采集到的故障样本存在数据不平衡、特征信息提取不足的问题,提出了一种基于数据增强型和高效卷积块注意力机制(ECBAM)优化一维改进卷积神经网络(1D-ICNN)的变压器故障诊断方法。首先,建立一个基于Wasserstein梯... 针对目前变压器故障诊断采集到的故障样本存在数据不平衡、特征信息提取不足的问题,提出了一种基于数据增强型和高效卷积块注意力机制(ECBAM)优化一维改进卷积神经网络(1D-ICNN)的变压器故障诊断方法。首先,建立一个基于Wasserstein梯度惩罚生成对抗网络(WGAN-GP),对不平衡的变压器数据样本进行训练以生成合成样本,用于数据增强,并采用方差分析法选取关联性强的气体特征参量;其次,使用残差和高效卷积块注意力机制模块对重构的平衡样本进行更为细节的特征提取,以实现故障诊断网络的分类;最后,利用改进的鹈鹕优化算法(IPOA)对ICNN参数进行寻优。算例对比分析表明,所提算法的故障诊断性能具备更高的精确度和稳定性,验证了所提模型故障诊断分类性能的有效性。 展开更多
关键词 变压器故障诊断 数据增强 高效卷积注意力机制 鹈鹕优化算法
在线阅读 下载PDF
基于解耦注意力与幻影卷积的轻量级人体姿态估计
2
作者 陈俊颖 郭士杰 陈玲玲 《计算机应用》 北大核心 2025年第1期223-233,共11页
随着轻量级网络的发展,人体姿态估计任务得以在计算资源有限的设备上执行,然而,提升精度变得更具有挑战性。这些挑战主要源于网络复杂度与计算资源的矛盾,导致模型在简化时牺牲了表示能力。针对上述问题,提出一种基于解耦注意力和幻影... 随着轻量级网络的发展,人体姿态估计任务得以在计算资源有限的设备上执行,然而,提升精度变得更具有挑战性。这些挑战主要源于网络复杂度与计算资源的矛盾,导致模型在简化时牺牲了表示能力。针对上述问题,提出一种基于解耦注意力和幻影卷积的轻量级人体姿态估计网络(DGLNet)。具体来说,DGLNet以小型高分辨率网络(Small HRNet)模型为基础架构,通过引入解耦注意力机制构建DFDbottleneck模块;采用shuffleblock的结构对基础模块进行重新设计,即用轻量级幻影卷积替代计算量大的点卷积,并利用解耦注意力机制增强模块性能,从而构建DGBblock模块;此外,用幻影卷积和解耦注意力重新构建的深度可分离卷积模块来替代原过渡层模块,从而构建GSCtransition模块,进一步减少计算量并增强特征交互性和提高性能。在COCO验证集上的实验结果显示,DGLNet优于轻量级高分辨率网络(Lite-HRNet),在计算量和参数量不增加的情况下,最高精度达到了71.9%;与常见的轻量级姿态估计网络MobileNetV2和ShuffleNetV2相比,DGLNet在仅使用21.2%和25.0%的计算量情况下分别实现了4.6和8.3个百分点的精度提升;在AP^(50)的评价标准上,DGLNet超过了大型高分辨率网络(HRNet)的同时计算量和参数量远小于HRNet。 展开更多
关键词 人体姿态估计 轻量级网络 注意力机制 幻影卷积 深度可分离卷积模块
在线阅读 下载PDF
基于卷积—反残差和组合注意力机制的航天器多余物检测 被引量:1
3
作者 花诗燕 李大伟 +1 位作者 贾书一 汪俊 《计算机集成制造系统》 EI CSCD 北大核心 2024年第1期53-66,共14页
航天器密闭电子设备内腔多余物给航天器飞行安全带来了巨大隐患。由于多余物体积小、与设备内常规组件形态结构相似且易被其他组件遮挡,采用现有的方法对其进行检测时误检、漏检频发。为解决上述问题,提出一种基于卷积—反残差和组合注... 航天器密闭电子设备内腔多余物给航天器飞行安全带来了巨大隐患。由于多余物体积小、与设备内常规组件形态结构相似且易被其他组件遮挡,采用现有的方法对其进行检测时误检、漏检频发。为解决上述问题,提出一种基于卷积—反残差和组合注意力机制的航天器密闭电子设备多余物检测网络RPDN。首先,网络通过构建卷积—反残差模块,保证了多余物细粒度特征的完整性;其次,设计组合注意力机制,增强了多余物特征的表征能力;最后,结合多尺度特征融合模块与目标检测层从多维度进行目标预测。实验结果表明RPDN在各项评价指标上均取得了良好的效果,mAP达到92.16%,检测效率达到了13FPS,实现了航天器密闭电子设备内腔多余物高效、精准检测。 展开更多
关键词 航天器 密闭电子设备 多余物检测 卷积—反残差模块 组合注意力机制
在线阅读 下载PDF
融合注意力机制和卷积神经网络的电网暂态电压稳定评估及可解释性分析 被引量:1
4
作者 张哲 秦博宇 +2 位作者 高鑫 丁涛 张逸兴 《电网技术》 EI CSCD 北大核心 2024年第11期4648-4657,I0057,I0056,共12页
提升复杂多变运行场景下电网稳定评估的时效性和准确性,提出一种融合注意力机制和卷积神经网络(convolutional neural network,CNN)的暂态电压稳定评估及可解释性分析方法。首先,采用卷积块注意力模块(convolutional block attention mo... 提升复杂多变运行场景下电网稳定评估的时效性和准确性,提出一种融合注意力机制和卷积神经网络(convolutional neural network,CNN)的暂态电压稳定评估及可解释性分析方法。首先,采用卷积块注意力模块(convolutional block attention module,CB AM)提升传统CNN的特征捕获能力,考虑模型特性和网络结构设计CBAMCNN组合模块。其次,建立基于CBAM-CNN的电网暂态电压稳定评估模型,揭示运行工况多变场景下系统关键电气量和稳定状态之间的映射关系。最后,基于沙普利值加性解释(Shapley additive explanations,SHAP)理论提出数据驱动模型评估结果的可解释性分析框架,提炼影响样本稳定状态的主导特征,评估各输入特征量对模型输出结果的贡献程度。在典型受端电网仿真系统中验证了所提稳定评估方法的准确性和可解释性分析方法的有效性。 展开更多
关键词 卷积注意力模块-卷积神经网络 暂态电压稳定评估 沙普利值加性解释理论 可解释性分析
在线阅读 下载PDF
基于集成改进卷积注意力块的SAR图像目标分类算法 被引量:1
5
作者 孙靖森 李宗豫 +3 位作者 杨森 钟芝怡 艾加秋 史骏 《海军航空大学学报》 2024年第4期445-452,共8页
在合成孔径雷达(Synthetic Aperture Radar,SAR)图像中,目标的轮廓和细节通常比较复杂。传统的卷积神经网络(Convolutional Neural Network,CNN)只使用单一均值参数进行无差别的特征提取,不能很好地区分SAR特征之间的差异。为了解决此问... 在合成孔径雷达(Synthetic Aperture Radar,SAR)图像中,目标的轮廓和细节通常比较复杂。传统的卷积神经网络(Convolutional Neural Network,CNN)只使用单一均值参数进行无差别的特征提取,不能很好地区分SAR特征之间的差异。为了解决此问题,文章提出了1种基于集成改进卷积注意力块(Improved Convolutional Block Attention Module,ICBAM)的SAR图像目标分类算法ICBAM_CNN。首先,该模块通过引入方差参数至传统CBAM模块中,设计了1种改进的CBAM注意力机制,有助于分类识别网络更好地学习SAR图像不同目标卷积层输出与通道注意力之间的差异信息,提升不同SAR目标特征的可分离性;然后,ICBAM设计了1种中心坐标注意力机制,能更好地捕捉SAR图像中目标的中心分布特征,有效抑制杂波对SAR目标分类影像的干扰;最后,为了提高效率,将改进后的ICBAM模块集成到CNN网络中,实现SAR图像目标分类。ICBAM_CNN深度融合了SAR图像目标的多层级特征,提升了SAR目标特征的可分离性,可实现SAR图像目标的高精度、高效率识别分类。通过MSTAR数据集进行实验,结果表明,相比于传统CBAM方法,改进ICBAM方法的精确率提升了2.44%,召回率提升了2.24%,F1-score提升了2.34%。 展开更多
关键词 SAR图像目标分类 改进卷积注意力 集成Icbam的CNN网络 中心坐标注意力机制 多层级特征融合
在线阅读 下载PDF
基于挤压激励的轻量化注意力机制模块 被引量:5
6
作者 吕振虎 许新征 张芳艳 《计算机应用》 CSCD 北大核心 2022年第8期2353-2360,共8页
针对向卷积神经网络(CNN)中嵌入注意力机制模块以提高模型应用精度导致参数和计算量增加的问题,提出基于挤压激励的轻量化高度维度挤压激励(HD-SE)模块和宽度维度挤压激励(WD-SE)模块。为了充分利用特征图中潜在的信息,HD-SE对卷积层输... 针对向卷积神经网络(CNN)中嵌入注意力机制模块以提高模型应用精度导致参数和计算量增加的问题,提出基于挤压激励的轻量化高度维度挤压激励(HD-SE)模块和宽度维度挤压激励(WD-SE)模块。为了充分利用特征图中潜在的信息,HD-SE对卷积层输出的特征图在高度维度上进行挤压激励操作,获得高度维度上的权重信息;而WD-SE在宽度维度上进行挤压激励操作,以得到特征图宽度维度上的权重信息;然后,将得到的权重信息分别应用于对应维度的特征图张量,以提高模型的应用精度。将HD-SE与WD-SE分别嵌入VGG16、ResNet56、MobileNetV1和MobileNetV2模型中,在CIFAR10和CIFAR100数据集上进行的实验结果表明,与挤压激励(SE)模块、协调注意力(CA)模块、卷积块注意力模块(CBAM)和高效通道注意力(ECA)模块等先进的注意力机制模块相比,HD-SE与WDSE在向网络模型中增加的参数和计算量更少的同时得到的精度相似或者更高。 展开更多
关键词 卷积神经网络 挤压激励 轻量化 多维度 注意力机制模块
在线阅读 下载PDF
基于注意力机制和迁移学习的服装分类方法 被引量:1
7
作者 陈金广 黄晓菊 马丽丽 《西安工程大学学报》 CAS 2024年第3期109-116,共8页
针对服装图像分类效率低、准确率不高等问题,提出了一种基于注意力机制和迁移学习的服装图像分类方法。主要采用预训练的ResNet50网络模型在服装数据集上进行迁移学习,以降低对数据集的依赖,并减少网络训练时间;通过几何变换和颜色抖动... 针对服装图像分类效率低、准确率不高等问题,提出了一种基于注意力机制和迁移学习的服装图像分类方法。主要采用预训练的ResNet50网络模型在服装数据集上进行迁移学习,以降低对数据集的依赖,并减少网络训练时间;通过几何变换和颜色抖动2种数据增强手段处理数据集,提高模型的泛化能力;以ResNet50为基础网络,加入卷积注意力机制模块(convolutional block attention module, CBAM),依次从通道和空间2个维度提高对服装不同区域的关注度,增强了特征表达能力。在CD和IDFashion两类背景干扰信息不同的数据集上进行验证,实验结果表明:所提出的模型能够提取更多服装特征信息,在IDFashion数据集的平均分类准确率为95.60%,分别高于ResNet50、ResNet50+STN和ResNet50+ECA模型6.65%、6.69%、6.62%,一定程度上提高了服装图像分类的准确率和效率。 展开更多
关键词 服装图像分类 ResNet50 卷积注意力机制模块(cbam) 注意力机制 迁移学习
在线阅读 下载PDF
基于卷积块注意力模块的图像描述生成模型 被引量:2
8
作者 余海波 陈金广 《计算机系统应用》 2021年第8期194-200,共7页
图像描述生成模型是使用自然语言描述图片的内容及其属性之间关系的算法模型.对现有模型描述质量不高、图片重要部分特征提取不足和模型过于复杂的问题进行了研究,提出了一种基于卷积块注意力机制模块(CBAM)的图像描述生成模型.该模型... 图像描述生成模型是使用自然语言描述图片的内容及其属性之间关系的算法模型.对现有模型描述质量不高、图片重要部分特征提取不足和模型过于复杂的问题进行了研究,提出了一种基于卷积块注意力机制模块(CBAM)的图像描述生成模型.该模型采用编码器-解码器结构,在特征提取网络Inception-v4中加入CBAM,并作为编码器提取图片的重要特征信息,将其送入解码器长短期记忆网络(LSTM)中,生成对应图片的描述语句.采用MSCOCO2014数据集中训练集和验证集进行训练和测试,使用多个评价准则评估模型的准确性.实验结果表明,改进后模型的评价准则得分优于其他模型,其中Model2实验能够更好地提取到图像特征,生成更加准确的描述. 展开更多
关键词 图像描述生成 卷积注意力模块 卷积神经网络 长短期记忆网络
在线阅读 下载PDF
基于卷积块注意力模块和双向特征金字塔网络的接触网支持装置检测方法研究 被引量:3
9
作者 冯新伟 黄宇祥 王忠立 《铁道技术监督》 2023年第4期16-24,共9页
接触网支持装置是接触网悬挂状态检测监测图像分析的关键对象,对支持装置零部件的检测定位是实现缺陷自动分析的基础。针对接触网支持装置零部件种类多、尺寸差异大、存在遮挡、部分零部件相似度高等问题,提出一种融合卷积块注意力模块(... 接触网支持装置是接触网悬挂状态检测监测图像分析的关键对象,对支持装置零部件的检测定位是实现缺陷自动分析的基础。针对接触网支持装置零部件种类多、尺寸差异大、存在遮挡、部分零部件相似度高等问题,提出一种融合卷积块注意力模块(convolutional block attention module,CBAM)和双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)的接触网支持装置检测方法。在YOLO v5s网络模型基础上,该方法通过CBAM增强接触网支持装置的特征提取,结合BiFPN,实现不同零部件分辨率特征图的融合。利用4C装置获得的图像数据集,开展验证试验。试验结果表明,相对YOLO v5s网络模型,融合CBAM和BiFPN的接触网支持装置检测方法,网络平均精度mAP@0.5提高2.12%;能显著提升小目标检测效果,提高定位的准确性和稳定性,对接触网状态的智能分析有重要意义。 展开更多
关键词 接触网 支持装置 检测方法 卷积注意力模块 双向特征金字塔网络
在线阅读 下载PDF
基于融合注意力机制深度网络的半色调图像分类
10
作者 李梅 许宝卉 +1 位作者 刘琦 王新海 《运城学院学报》 2024年第3期55-60,共6页
现有的半色调图像分类方法存在着识别半色调图像类型较少、分类准确率较低等问题。为了进一步提高半色调图像的分类准确率,本文提出一种基于融合注意力机制深度网络的半色调图像分类方法。首先,应用稠密残差块深度提取半色调图像信息,... 现有的半色调图像分类方法存在着识别半色调图像类型较少、分类准确率较低等问题。为了进一步提高半色调图像的分类准确率,本文提出一种基于融合注意力机制深度网络的半色调图像分类方法。首先,应用稠密残差块深度提取半色调图像信息,并应用通道注意力机制提取不同通道间的半色调图像噪点分布特征;然后,应用空间注意力机制提取不同通道不同空间下半色调图像噪点之间的关系;最后,应用分类器对识别到的半色调图像噪点分布特征进行分类,从而实现对半色调图像的分类。实验结果表明,运用基于融合注意力机制深度网络的半色调分类方法可以以99.72%的准确率、0.9971的F1分数实现14类半色调图像的分类。与其他方法相比,本文提出的方法在半色调图像分类准确率上提高了0.14%~0.24%,在F1分数上提高了0.0014。该方法可以以最高的准确率实现最多类型的半色调图像的分类。 展开更多
关键词 图像分类 半色调图像 稠密残差 注意力机制 卷积网络
在线阅读 下载PDF
基于注意力机制和Mogrifier LSTNet的道路交通占有率预测
11
作者 秦喜文 潘星宇 +2 位作者 张斯琪 石红玉 董小刚 《长春工业大学学报》 CAS 2024年第3期199-207,共9页
提出一种改进的LSTNet深度学习框架用于交通占有率数据预测。采用不同大小的卷积核来捕捉时间序列数据中不同时间范围内的模式和趋势,并融合CBAM注意力机制可以在通道维度和空间维度上自适应地调整特征的权重。通过引入Mogrifier机制多... 提出一种改进的LSTNet深度学习框架用于交通占有率数据预测。采用不同大小的卷积核来捕捉时间序列数据中不同时间范围内的模式和趋势,并融合CBAM注意力机制可以在通道维度和空间维度上自适应地调整特征的权重。通过引入Mogrifier机制多次迭代交替更新LSTM的输入门和遗忘门的权重,以更好地捕捉序列数据中的长期依赖关系。而AR模型充分考虑了数据集的自相关性帮助模型更好地理解历史信息。实验结果表明,提出的模型相对绝对值误差为0.3497,明显优于其他模型,能够有效提高交通占有率的准确预测。 展开更多
关键词 LSTNet模型 卷积神经网络 cbam注意力机制 Mogrifier LSTM 交通占有率预测
在线阅读 下载PDF
基于混合空洞卷积和注意力多尺度网络的残饵密度估计
12
作者 张丽珍 李延天 +3 位作者 李志坚 孟雄栋 张永琪 吴迪 《农业工程学报》 EI CAS CSCD 北大核心 2024年第14期137-145,共9页
及时、准确地估算饵料盘中残留饲料量是提高养殖效益的重要措施。针对虾类养殖场景下残饵检测模型复杂度高、计数精度低的问题,提出了一种基于混合空洞卷积和注意力多尺度网络(hybrid dilated convolution and attention multi-scale ne... 及时、准确地估算饵料盘中残留饲料量是提高养殖效益的重要措施。针对虾类养殖场景下残饵检测模型复杂度高、计数精度低的问题,提出了一种基于混合空洞卷积和注意力多尺度网络(hybrid dilated convolution and attention multi-scale network,HAMNet)的残饵密度估计方法。首先,借鉴MCNN(multi-column convolutional neural network)多列架构的思想设计并行卷积块(parallel convolution block,PCB),使网络在单列架构中提取多种尺度的残饵特征,简化了网络结构并减轻了计算量;同时为了弥补网络结构简化造成残饵特征表示能力略有不足的问题,引入混合空洞卷积块(hybrid dilated convolution block,HDCB)避免信息丢失并增大感受野,增强模型深入挖掘多尺度残饵信息的能力。其次,在网络中嵌入通道注意力机制(channel attention mechanism,CAM),利用通道之间的相互依赖性重新校准有用特征信息的权重,凸显目标与背景的差异性。最后,针对下采样导致密度图质量差的问题,应用可学习的转置卷积恢复特征图细节信息,进而提升模型计数性能。利用饵料盘条件下采集的残饵图像进行了验证,试验结果表明,与基准模型MCNN相比,HAMNet模型的平均绝对误差、均方根误差和计算量分别降低了44.4%、40.8%和13.7%,参数量仅为0.52 MB。与经典密度估计模型CMTL(cascaded multi-task learning)、SANet(scale aggregation network)、CSRNet(congested scene recognition network)相比,该模型在各项性能指标上保持了最佳平衡,明显处于优势。该研究可为人工智能在水产养殖中快速量化残饵提供参考。 展开更多
关键词 水产养殖 模型 残饵 密度估计 并行卷积 混合空洞卷积 通道注意力机制 转置卷积
在线阅读 下载PDF
融合动态场景感知和注意力机制的声学回声消除算法
13
作者 许春冬 黄乔月 +1 位作者 王磊 徐锦武 《信号处理》 CSCD 北大核心 2024年第2期396-405,共10页
在实时语音频通话系统中,如何去除声学回声得到清晰语音是目前最受关注的难题之一。声学回声消除(Acoustic echo cancellation,AEC)技术旨在消除语音频通话系统中的声学回声,提高通话过程中的语音质量,给予用户良好的通话体验,但是传统... 在实时语音频通话系统中,如何去除声学回声得到清晰语音是目前最受关注的难题之一。声学回声消除(Acoustic echo cancellation,AEC)技术旨在消除语音频通话系统中的声学回声,提高通话过程中的语音质量,给予用户良好的通话体验,但是传统回声消除系统存在去回声效果不明显、存在非线性回声残留以及无法实时处理回声等问题。因此,为解决上述存在问题,提出了一种动态场景感知模块(Dynamic scene perception module,DSPM)和全局注意力机制(Global attention mechanism,GAM)相结合的声学回声消除算法。该算法以卷积循环网络(Convolutional recurrent network,CRN)作为基线模型,提取语音信号的序列特征;首先,在其编码器中引入DSPM模块替换原因果卷积,根据场景动态分配卷积内核数量,加强模型的自适应性;其次,在编码器最后两层中分别引入GAM模块,放大空间通道间关系以及统筹全局交互,提升对语音信号特征的提取能力以及消除回声的性能;最后,通过将MSE损失函数和HuberLoss损失函数线性相加生成一种新的损失函数——MSE-HuberLoss,进一步提高模型的鲁棒性。实验结果表明,提出的GAM-DSPM-CRN模型的回声消除性能优秀,且获得较基线模型更加清晰的重构语音信号;在双端通话环境下,提出的GAM-DSPM-CRN模型声学回声消除算法较其他对比算法性能有较大提升;在Microsoft AEC Challenges数据集上,MOS、ERLE和STOI的得分分别达到了4.09、57.43和0.78。 展开更多
关键词 声学回声消除 动态场景感知模块 全局注意力机制 卷积循环网络 联合损失函数
在线阅读 下载PDF
基于注意力机制的卷积神经网络人脸表情识别 被引量:5
14
作者 亢洁 李思禹 《陕西科技大学学报》 CAS 2020年第4期159-165,171,共8页
现有的卷积神经网络规模越来越大,导致参数量过大,结构不够轻量,并且现有的网络难以识别人脸表情的细微变化,不能对人脸表情特征进行精确提取,表情识别性能有待提高.针对以上问题,提出了一种基于注意力机制的卷积神经网络表情识别方法.... 现有的卷积神经网络规模越来越大,导致参数量过大,结构不够轻量,并且现有的网络难以识别人脸表情的细微变化,不能对人脸表情特征进行精确提取,表情识别性能有待提高.针对以上问题,提出了一种基于注意力机制的卷积神经网络表情识别方法.该方法设计了一种新的网络结构,网络在卷积层的基础上增加了残差恒等块,同时引入注意力模块(Spatial Group-wise Enhance module,SGE),有效缓解了网络的过拟合现象,丰富了人脸表情特征学习,并利用全局特征和局部特征的相似性来指导语义特征的空间分布,使每个特征组自主增强人脸表情的特征学习.该网络结构较为轻量,参数量较少.在RAF-DB和CK+数据集上的实验结果表明,该方法有效改善了人脸表情识别的性能. 展开更多
关键词 卷积神经网络 人脸表情识别 注意力机制 残差恒等
在线阅读 下载PDF
引入卷积块注意力模块的YOLOv5网络在地铁车辆一系弹簧断裂检测中的应用
15
作者 江现昌 邹庆春 +1 位作者 李翔泽 王静 《铁道技术监督》 2023年第10期29-33,共5页
作为地铁车辆关键部件的一系弹簧会发生断裂,威胁列车运行安全。由于一系弹簧断裂的位置、形状不同,并且断裂位置常常被遮挡,使得采用目标检测方法检测时,目标面积较小。对于小目标,采用的基于深度学习的目标检测方法检测难以达到好的... 作为地铁车辆关键部件的一系弹簧会发生断裂,威胁列车运行安全。由于一系弹簧断裂的位置、形状不同,并且断裂位置常常被遮挡,使得采用目标检测方法检测时,目标面积较小。对于小目标,采用的基于深度学习的目标检测方法检测难以达到好的效果。针对这一问题,在YOLOv5网络的基础上加以改进,加入更小的初始检测锚框,并且在主干网络加入空间和通道注意力模块。对比试验结果表明,改进后平均准确率提高3%,有效提高了小目标的检测能力。 展开更多
关键词 地铁动车组 转向架 一系弹簧 YOLOv5算法 卷积注意力模块 注意力机制 目标检测
在线阅读 下载PDF
基于注意力机制的U-Net叶片缺陷图像分割
16
作者 祁雷 李宁 +2 位作者 梁伟 王峥 刘子梁 《中国安全科学学报》 CAS CSCD 北大核心 2024年第5期139-146,共8页
为解决风力发电机叶片表面缺陷检测存在分类困难和微小缺陷分割模糊的难题,构建一种基于扩张卷积和卷积注意力模块的改进U-Net语义分割网络。该网络基于网络模型的编码-解码结构,使用可迁移的VGG16的特征提取层代替U-Net网络的编码部分... 为解决风力发电机叶片表面缺陷检测存在分类困难和微小缺陷分割模糊的难题,构建一种基于扩张卷积和卷积注意力模块的改进U-Net语义分割网络。该网络基于网络模型的编码-解码结构,使用可迁移的VGG16的特征提取层代替U-Net网络的编码部分,在编码-解码之间的跳跃模块加入卷积注意力模块。通过对微小缺陷信息选取加强全局权重,使用扩张卷积增强网络特征,采用VGG16预训练模型实现迁移学习。开展Focal与Dice结合的混合损失函数验证,对比分析DeeplabV3+、PSPnet、HRNet、U-Net这4种模型。结果表明:对于叶片缺陷数据集,改进的U-Net网络模型对叶片缺陷的分类和分割任务具有更高的精度,均交并比、均像素精度和召回率等指标值分别为83.60%、92.84%和88.50%。改进U-Net网络的均交并比值比DeeplabV3+模型高13.98%,比标准U-Net模型高9.38%,能够提高叶片缺陷检测的灵敏度,有效降低检测结果的误报警率,有助于准确检测风机叶片缺陷。 展开更多
关键词 注意力机制 U-Net网络 风机叶片缺陷 图像分割 语义分割 迁移学习 卷积注意力模块(cbam)
在线阅读 下载PDF
基于注意力机制轻量化模型的植物病害识别方法
17
作者 苏航 陈旭昊 +3 位作者 寿德荣 张朝阳 许彪 孙丙宇 《江苏农业学报》 CSCD 北大核心 2024年第8期1389-1399,共11页
针对现有植物病害识别模型存在响应速度慢、参数量多、计算机内存资源消耗大等问题,本研究提出了一种轻量化神经网络模型,该模型由特征提取层、特征增强层和分类器组成。为了减小模型大小并提高网络响应速度,在特征提取层中使用深度可... 针对现有植物病害识别模型存在响应速度慢、参数量多、计算机内存资源消耗大等问题,本研究提出了一种轻量化神经网络模型,该模型由特征提取层、特征增强层和分类器组成。为了减小模型大小并提高网络响应速度,在特征提取层中使用深度可分离卷积进行特征提取。为了防止网络传播过程中的梯度消失并增强病害像素特征融合,在特征提取层中引入了大卷积核倒置残差结构(IRBCKS)模块。此外,在特征增强层集成了轻量级卷积块注意力模块(CBAM)注意力机制,以捕捉植物病害相关图像中像素之间的关系,增强关键信息的提取。最后,采用剪枝技术剔除模型中冗余特征信息,从而再次减少模型参数量,形成最终的轻量级网络模型Cut-MobileNet。为验证该模型的先进性,将其与轻量化模型(MobileNet V2、SqueezeNet、GoogLeNet)和非轻量化模型(Vision Transformer、AlexNet)进行性能对比,研究结果表明,Cut-MobileNet在浮点运算量、准确率、单张图片推理时间、参数量、F1值和模型大小等性能指标上都取得了较优的效果。 展开更多
关键词 模型剪枝 卷积注意力模块(cbam)注意力机制 卷积核倒置残差结构(IRBCKS)模块 植物病害 轻量化网络
在线阅读 下载PDF
KMeans++与注意力机制融合的苹果叶片病害识别方法
18
作者 黄贻望 王国帅 +1 位作者 毛志 刘声 《江苏农业科学》 北大核心 2024年第20期190-198,共9页
为解决复杂环境下小尺度苹果叶片病害识别精度不高、鲁棒性不强的问题,在YOLO v5s的基础上提出一种新的改进方法。该方法首先在模型训练之前使用KMeans++聚类算法生成更接近真实框的锚框;其次在骨干网络中加入卷积块注意几模块(convolut... 为解决复杂环境下小尺度苹果叶片病害识别精度不高、鲁棒性不强的问题,在YOLO v5s的基础上提出一种新的改进方法。该方法首先在模型训练之前使用KMeans++聚类算法生成更接近真实框的锚框;其次在骨干网络中加入卷积块注意几模块(convolutional block attention module,CBAM),来提升复杂环境下小目标特征的提取能力;再次为了增强颈部网络对不同大小病害多尺度特征的有效识别,选择ConvNeXtBlock模块替换C3(CSP bottleneck with 3 convolutions)模块,并在颈部网络中融入坐标注意力模块(coordinate attention,CA),来加强模型对关键空间位置的响应,使得不同尺度的特征都能被更有效地利用;最后使用ECIoU损失函数替换原始的CIoU损失函数,来提高模型的收敛速度和精度。与Faster R-CNN、SSD、YOLO v5s、YOLO v7、YOLO v8目标检测模型相比,改进后模型的平均精度均值(mean average precision,mAP 0.5)值分别提升0.6、4.6、6.3、1.7、1.3百分点,同时在强光照、模糊、暗光的复杂场景下具有较强的鲁棒性。该模型可以为复杂环境下苹果叶片病害的识别提供行之有效的方案。 展开更多
关键词 苹果 叶片病害 病害检测 注意力机制 ConvNeXtBlock 卷积注意力模块(cbam) CA
在线阅读 下载PDF
基于注意力机制的多尺度道路损伤检测算法研究 被引量:1
19
作者 武兵 田莹 《图学学报》 CSCD 北大核心 2024年第4期770-778,共9页
路损伤检测是道路养护与修复的一项重要任务。现有的道路损伤检测方式以传统的人工检测为主,人工检测需要投入大量的人力和物力,检测效率低,无法适应当前道路发展的需求。进而提出了一种改进的多尺度道路损伤检测算法YOLOv8-RDD。首先,Y... 路损伤检测是道路养护与修复的一项重要任务。现有的道路损伤检测方式以传统的人工检测为主,人工检测需要投入大量的人力和物力,检测效率低,无法适应当前道路发展的需求。进而提出了一种改进的多尺度道路损伤检测算法YOLOv8-RDD。首先,YOLOv8-RDD算法在C2f模块中使用可变形卷积(DCN)建了全新的C2f_DCN模块,扩大感受野的有效范围,更准确地定位目标对象的边界和位置,有助于提升对目标的识别和定位能力;其次,网络末端设计了全新的SPPF_GS模块,在SPPF模块中引入了自注意力机制(SA)和幻影卷积Ghost模块,并重新优化了池化核的大小,更好的处理长距离依赖性和捕获全局信息;最后,在Neck中引入坐标注意力机制(CA),强化模型的特征提取能力,减少冗余信息。实验结果表明,改进后的算法在RDD2022数据集上面的精确度(Precision)为61.1%、召回率(Recall)为55.5%,平均精度(mAP)为56.2%,相较于YOLOv8n算法分别提高了4.6%、4.7%和5.2%,在道路损伤的目标检测上取得了优异的效果。 展开更多
关键词 道路损伤检测 YOLOv8 可变形卷积 注意力机制 Ghost模块
在线阅读 下载PDF
基于注意力机制的艾德莱斯绸纹饰图案分割研究
20
作者 黄凯茜 安娃 《包装工程》 CAS 北大核心 2024年第22期420-426,共7页
目的由于艾德莱斯绸具有丰富的色彩和复杂的纹饰图案,在对其进行图案分割时难度较大,容易出现错分割和漏分割的情况。为此,提出了基于注意力机制的艾德莱斯绸纹饰图案分割算法。方法采用FCN模型对艾德莱斯绸纹饰图像进行卷积训练,突出... 目的由于艾德莱斯绸具有丰富的色彩和复杂的纹饰图案,在对其进行图案分割时难度较大,容易出现错分割和漏分割的情况。为此,提出了基于注意力机制的艾德莱斯绸纹饰图案分割算法。方法采用FCN模型对艾德莱斯绸纹饰图像进行卷积训练,突出图像的语义特征信息。利用通道注意力模块和位置注意力模块,分别对艾德莱斯绸纹饰图像展开学习,得到维度完全相同的特征图。将两个模块特征图融合后与FCN模型输出图像再次融合,得到艾德莱斯绸纹饰图像的特征提取结果,选取图像中的感兴趣区域,完成对艾德莱斯绸纹饰图案的分割。结论实验结果表明,所提方法取得了精准度较高的分割结果,分割图像边缘清晰,没有出现错分割和漏分割的情况,分割结果总体上较为理想。 展开更多
关键词 注意力机制 艾德莱斯绸纹饰 图案分割 语义特征信息 卷积神经网络 通道注意力模块
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部