甲烷是最重要的温室气体之一,其单分子温室效应是二氧化碳的29倍。全球变暖的20%是由它造成的。甲烷的控制一直是人们关注的焦点。以往关于甲烷氧化的研究主要集中在氧作为电子受体介导的好氧甲烷氧化过程。近年来,硫酸盐、硝酸盐和亚...甲烷是最重要的温室气体之一,其单分子温室效应是二氧化碳的29倍。全球变暖的20%是由它造成的。甲烷的控制一直是人们关注的焦点。以往关于甲烷氧化的研究主要集中在氧作为电子受体介导的好氧甲烷氧化过程。近年来,硫酸盐、硝酸盐和亚硝酸盐被证明是在厌氧条件下介导湖泊甲烷氧化的电子受体。本文介绍了四种厌氧氧化的方式在湖泊厌氧氧化(AOM)过程中的研究进展。这将促进对湖泊AOM反应机理的认识和AOM的实际应用,对正确认识全球碳、氮、硫循环具有重要意义。对湖泊AOM过程的进一步研究,对于拓宽该过程的工程应用范围,正确认识全球碳、氮、硫循环具有重要意义。Methane is one of the most important greenhouse gases, with a single-molecule greenhouse effect 29 times that of carbon dioxide. It is responsible for 20% of global warming. The control of methane has always been a focus of attention. Previous research on methane oxidation has primarily focused on aerobic methane oxidation processes mediated by oxygen as the electron acceptor. In recent years, it has been demonstrated that sulfate, nitrate, and nitrite can act as electron acceptors mediating methane oxidation under anaerobic conditions. This paper reviews the research progress on four types of anaerobic oxidation mechanisms in the Anaerobic Oxidation of Methane (AOM) process. This will enhance our understanding of the mechanisms of AOM reactions and promote their practical applications, which are crucial for correctly recognizing global carbon, nitrogen, and sulfur cycles. Further research on the AOM process is significant for broadening its engineering application scope and for accurately understanding global carbon, nitrogen, and sulfur cycles.展开更多
通过沉积物柱孔隙水中甲烷,SO42-,Cl-,δc(34S-SO42-)、δc(13C-CH4)的垂直分布特征,研究了硫酸盐还原和甲烷厌氧氧化(anaerobic oxidation of methane,简称AOM)过程在九龙江河口沉积物中的分布规律。测定结果显示两个站位(J-A和J-E)间...通过沉积物柱孔隙水中甲烷,SO42-,Cl-,δc(34S-SO42-)、δc(13C-CH4)的垂直分布特征,研究了硫酸盐还原和甲烷厌氧氧化(anaerobic oxidation of methane,简称AOM)过程在九龙江河口沉积物中的分布规律。测定结果显示两个站位(J-A和J-E)间隙水中SO42-浓度随深度增加快速减小,分别在55和130 cm深度附近消耗殆尽,而惰性的Cl-浓度随深度没有减小的趋势;孔隙水中硫酸盐的硫同位素组成随着深度增加明显偏重。这些结果表明两个站位沉积物上部(55和130 cm)存在明显的硫酸盐还原作用。孔隙水中甲烷浓度在硫酸盐-甲烷过渡带(sulfate-methane transition,简称SMT)随着深度减小急剧增大,与此同时甲烷碳同位素组成也相应偏重,表明两个站位沉积物下部产生的大量甲烷在SMT附近被AOM消耗。沉积物中SMT分布深度与上覆水盐度存在明显的正相关,反映了研究区上覆水盐度变化所导致的硫酸盐浓度改变是控制九龙江河口沉积物中SMT深度的关键因素。展开更多
内陆湿地与水体(如湖泊、河流、水库等)是温室气体甲烷的重要排放源。微生物介导的甲烷厌氧氧化(anaerobic oxidation of methane,AOM)反应在控制内陆湿地与水体甲烷排放中起着不可忽视的作用,对缓解全球温室效应具有重要意义。内陆湿...内陆湿地与水体(如湖泊、河流、水库等)是温室气体甲烷的重要排放源。微生物介导的甲烷厌氧氧化(anaerobic oxidation of methane,AOM)反应在控制内陆湿地与水体甲烷排放中起着不可忽视的作用,对缓解全球温室效应具有重要意义。内陆湿地与水体易形成缺氧环境,且电子受体的种类和数量繁多,是发生AOM反应的理想生境。近年来,不断有研究表明,内陆湿地与水体中存在多种电子受体(NO^(-)_(2)、NO^(-)_(3)、SO^(2-)_(4)、Fe(Ⅲ)等)驱动的AOM途径。NC10门细菌和甲烷厌氧氧化古菌(anaerobic methanotrophic archaea,ANME)的一新分支ANME^(-)_(2)d主导了湿地和水体环境中的AOM反应,其中ANME^(-)_(2)d具有根据环境条件选择不同电子受体的潜力。研究系统综述了内陆湿地与水体中不同电子受体驱动的AOM途径及其参与的主要功能微生物类群;分析了AOM反应在控制温室气体甲烷排放中的作用及其环境影响因素;总结了相关功能微生物的分子生物学检测方法及甲烷厌氧氧化活性测定的同位素示踪技术。最后,对未来相关研究方向进行了展望。展开更多
文摘甲烷是最重要的温室气体之一,其单分子温室效应是二氧化碳的29倍。全球变暖的20%是由它造成的。甲烷的控制一直是人们关注的焦点。以往关于甲烷氧化的研究主要集中在氧作为电子受体介导的好氧甲烷氧化过程。近年来,硫酸盐、硝酸盐和亚硝酸盐被证明是在厌氧条件下介导湖泊甲烷氧化的电子受体。本文介绍了四种厌氧氧化的方式在湖泊厌氧氧化(AOM)过程中的研究进展。这将促进对湖泊AOM反应机理的认识和AOM的实际应用,对正确认识全球碳、氮、硫循环具有重要意义。对湖泊AOM过程的进一步研究,对于拓宽该过程的工程应用范围,正确认识全球碳、氮、硫循环具有重要意义。Methane is one of the most important greenhouse gases, with a single-molecule greenhouse effect 29 times that of carbon dioxide. It is responsible for 20% of global warming. The control of methane has always been a focus of attention. Previous research on methane oxidation has primarily focused on aerobic methane oxidation processes mediated by oxygen as the electron acceptor. In recent years, it has been demonstrated that sulfate, nitrate, and nitrite can act as electron acceptors mediating methane oxidation under anaerobic conditions. This paper reviews the research progress on four types of anaerobic oxidation mechanisms in the Anaerobic Oxidation of Methane (AOM) process. This will enhance our understanding of the mechanisms of AOM reactions and promote their practical applications, which are crucial for correctly recognizing global carbon, nitrogen, and sulfur cycles. Further research on the AOM process is significant for broadening its engineering application scope and for accurately understanding global carbon, nitrogen, and sulfur cycles.