In this paper we calculate a synthetic medium surface displacement response that is consistent with real measurement data by applying the least-square principle and a niche genetic algorithm to the parameters inversio...In this paper we calculate a synthetic medium surface displacement response that is consistent with real measurement data by applying the least-square principle and a niche genetic algorithm to the parameters inversion problem of the wave equation in a two-phase medium. We propose a niche genetic multi-parameter (including porosity, solid phase density and fluid phase density) joint inversion algorithm based on a two-phase fractured medium in the BISQ model. We take the two-phase fractured medium of the BISQ model in a two- dimensional half space as an example, and carry out the numerical reservoir parameters inversion. Results show that this method is very convenient for solving the parameters inversion problem for the wave equation in a two-phase medium, and has the advantage of strong noise rejection. Relative to conventional genetic algorithms, the niche genetic algorithm based on a sharing function can not only significantly speed up the convergence, but also improve the inversion precision.展开更多
For density inversion of gravity anomaly data, once the inversion method is determined, the main factors affecting the inversion result are the inversion parameters and subdivision scheme. A set of reasonable inversio...For density inversion of gravity anomaly data, once the inversion method is determined, the main factors affecting the inversion result are the inversion parameters and subdivision scheme. A set of reasonable inversion parameters and subdivision scheme can, not only improve the inversion process efficiency, but also ensure inversion result accuracy. The gravity inversion method based on correlation searching and the golden section algorithm is an effective potential field inversion method. It can be used to invert 2D and 3D physical properties with potential data observed on flat or rough surfaces. In this paper, we introduce in detail the density inversion principles based on correlation searching and the golden section algorithm. Considering that the gold section algorithm is not globally optimized. we present a heuristic method to ensure the inversion result is globally optimized. With a series of model tests, we systematically compare and analyze the inversion result efficiency and accuracy with different parameters. Based on the model test results, we conclude the selection principles for each inversion parameter with which the inversion accuracy can be obviously improved.展开更多
This paper established a geophysical retrieval algorithm for sea surface wind vector, sea surface temperature, columnar atmospheric water vapor, and columnar cloud liquid water from WindSat, using the measured brightn...This paper established a geophysical retrieval algorithm for sea surface wind vector, sea surface temperature, columnar atmospheric water vapor, and columnar cloud liquid water from WindSat, using the measured brightness temperatures and a matchup database. To retrieve the wind vector, a chaotic particle swarm approach was used to determine a set of possible wind vector solutions which minimize the difference between the forward model and the WindSat observations. An adjusted circular median filtering function was adopted to remove wind direction ambiguity. The validation of the wind speed, wind direction, sea surface temperature, columnar atmospheric water vapor, and columnar liquid cloud water indicates that this algorithm is feasible and reasonable and can be used to retrieve these atmospheric and oceanic parameters. Compared with moored buoy data, the RMS errors for wind speed and sea surface temperature were 0.92 m s^(-1) and 0.88℃, respectively. The RMS errors for columnar atmospheric water vapor and columnar liquid cloud water were 0.62 mm and 0.01 mm, respectively, compared with F17 SSMIS results. In addition, monthly average results indicated that these parameters are in good agreement with AMSR-E results. Wind direction retrieval was studied under various wind speed conditions and validated by comparing to the Quik SCAT measurements, and the RMS error was 13.3?. This paper offers a new approach to the study of ocean wind vector retrieval using a polarimetric microwave radiometer.展开更多
The regularization contributes to the resolution and stability in geophysical inversion. The authors apply dual-parameter shaping regularization to full waveform inversion, aiming at two points : ( 1 ) improving th...The regularization contributes to the resolution and stability in geophysical inversion. The authors apply dual-parameter shaping regularization to full waveform inversion, aiming at two points : ( 1 ) improving the boundary resolution, and (2) increasing convergence. Firstly, the forward modeling is done, and the inversion is processed with the optimal solution. Compared with classical Tikhonov regularization scheme, the method re fleets better resolution and stronger convergence. Then, Marmousi model is experimented and inversed, and the deep structure has a sharper outline. The phase residual comparison illustrates weaker cycle-slipping. And a choice scheme of parameter is applied in FWI.展开更多
A topographic parameter inversion method based on laser altimetry is developed in this paper, which can be used to deduce the surface vertical profile and retrieve the topographic parameters within the laser footprint...A topographic parameter inversion method based on laser altimetry is developed in this paper, which can be used to deduce the surface vertical profile and retrieve the topographic parameters within the laser footprints by analyzing and simulating return waveforms. This method comprises three steps. The first step is to build the numerical models for the whole measuring procedure of laser altimetry, construct digital elevation models for surfaces with different topographic parameters, and calculate return waveforms. The second step is to analyze the simulated return waveforms to obtain their characteristics parameters, summarize the effects of the topographic parameter variations on the characteristic parameters of simulated return waveforms, and analyze the observed return waveforms of laser altimeters to acquire their characteristic parameters at the same time. The last step is to match the characteristic parameters of the simulated and observed return waveforms, and deduce the topographic parameters within the laser footprint. This method can be used to retrieve the topographic parameters within the laser footprint from the observed return waveforms of spaceborne laser altimeters and to get knowledge about the surface altitude distribution within the laser footprint other than only getting the height of the surface encountered firstly by the laser beam, which extends laser altimeters' function and makes them more like radars.展开更多
基金sponsored by the National Science and Technology Major Project(Grant No.2011ZX05025-001-07)
文摘In this paper we calculate a synthetic medium surface displacement response that is consistent with real measurement data by applying the least-square principle and a niche genetic algorithm to the parameters inversion problem of the wave equation in a two-phase medium. We propose a niche genetic multi-parameter (including porosity, solid phase density and fluid phase density) joint inversion algorithm based on a two-phase fractured medium in the BISQ model. We take the two-phase fractured medium of the BISQ model in a two- dimensional half space as an example, and carry out the numerical reservoir parameters inversion. Results show that this method is very convenient for solving the parameters inversion problem for the wave equation in a two-phase medium, and has the advantage of strong noise rejection. Relative to conventional genetic algorithms, the niche genetic algorithm based on a sharing function can not only significantly speed up the convergence, but also improve the inversion precision.
基金supported by Specialized Research Fund for the Doctoral Program of Higher Education of China(20110022120004)the Fundamental Research Funds for the Central Universities
文摘For density inversion of gravity anomaly data, once the inversion method is determined, the main factors affecting the inversion result are the inversion parameters and subdivision scheme. A set of reasonable inversion parameters and subdivision scheme can, not only improve the inversion process efficiency, but also ensure inversion result accuracy. The gravity inversion method based on correlation searching and the golden section algorithm is an effective potential field inversion method. It can be used to invert 2D and 3D physical properties with potential data observed on flat or rough surfaces. In this paper, we introduce in detail the density inversion principles based on correlation searching and the golden section algorithm. Considering that the gold section algorithm is not globally optimized. we present a heuristic method to ensure the inversion result is globally optimized. With a series of model tests, we systematically compare and analyze the inversion result efficiency and accuracy with different parameters. Based on the model test results, we conclude the selection principles for each inversion parameter with which the inversion accuracy can be obviously improved.
基金supported by the National Natural Science Foundation of China (Grant Nos.41205013 and 41105012)
文摘This paper established a geophysical retrieval algorithm for sea surface wind vector, sea surface temperature, columnar atmospheric water vapor, and columnar cloud liquid water from WindSat, using the measured brightness temperatures and a matchup database. To retrieve the wind vector, a chaotic particle swarm approach was used to determine a set of possible wind vector solutions which minimize the difference between the forward model and the WindSat observations. An adjusted circular median filtering function was adopted to remove wind direction ambiguity. The validation of the wind speed, wind direction, sea surface temperature, columnar atmospheric water vapor, and columnar liquid cloud water indicates that this algorithm is feasible and reasonable and can be used to retrieve these atmospheric and oceanic parameters. Compared with moored buoy data, the RMS errors for wind speed and sea surface temperature were 0.92 m s^(-1) and 0.88℃, respectively. The RMS errors for columnar atmospheric water vapor and columnar liquid cloud water were 0.62 mm and 0.01 mm, respectively, compared with F17 SSMIS results. In addition, monthly average results indicated that these parameters are in good agreement with AMSR-E results. Wind direction retrieval was studied under various wind speed conditions and validated by comparing to the Quik SCAT measurements, and the RMS error was 13.3?. This paper offers a new approach to the study of ocean wind vector retrieval using a polarimetric microwave radiometer.
文摘The regularization contributes to the resolution and stability in geophysical inversion. The authors apply dual-parameter shaping regularization to full waveform inversion, aiming at two points : ( 1 ) improving the boundary resolution, and (2) increasing convergence. Firstly, the forward modeling is done, and the inversion is processed with the optimal solution. Compared with classical Tikhonov regularization scheme, the method re fleets better resolution and stronger convergence. Then, Marmousi model is experimented and inversed, and the deep structure has a sharper outline. The phase residual comparison illustrates weaker cycle-slipping. And a choice scheme of parameter is applied in FWI.
基金supported by the National Hi-Tech Research and Development Program of China (Grant No. 2007AA12Z177)
文摘A topographic parameter inversion method based on laser altimetry is developed in this paper, which can be used to deduce the surface vertical profile and retrieve the topographic parameters within the laser footprints by analyzing and simulating return waveforms. This method comprises three steps. The first step is to build the numerical models for the whole measuring procedure of laser altimetry, construct digital elevation models for surfaces with different topographic parameters, and calculate return waveforms. The second step is to analyze the simulated return waveforms to obtain their characteristics parameters, summarize the effects of the topographic parameter variations on the characteristic parameters of simulated return waveforms, and analyze the observed return waveforms of laser altimeters to acquire their characteristic parameters at the same time. The last step is to match the characteristic parameters of the simulated and observed return waveforms, and deduce the topographic parameters within the laser footprint. This method can be used to retrieve the topographic parameters within the laser footprint from the observed return waveforms of spaceborne laser altimeters and to get knowledge about the surface altitude distribution within the laser footprint other than only getting the height of the surface encountered firstly by the laser beam, which extends laser altimeters' function and makes them more like radars.