Intent detection and slot filling are two important components of natural language understanding.Because their relevance,joint training is often performed to improve performance.Existing studies mostly use a joint mod...Intent detection and slot filling are two important components of natural language understanding.Because their relevance,joint training is often performed to improve performance.Existing studies mostly use a joint model of multi-intent detection and slot-filling with unidirectional interaction,which improves the overall performance of the model by fusing the intent information in the slot-filling part.On this basis,in order to further improve the overall performance of the model by exploiting the correlation between the two,this paper proposes a joint multi-intent detection and slot-filling model based on a bidirectional interaction structure,which fuses the intent encoding information in the encoding part of slot filling and fuses the slot decoding information in the decoding part of intent detection.Experimental results on two public multi-intent joint training datasets,MixATIS and MixSNIPS,show that the bidirectional interaction structure proposed in this paper can effectively improve the performance of the joint model.In addition,in order to verify the generalization of the bidirectional interaction structure between intent and slot,a joint model for single-intent scenarios is proposed on the basis of the model in this paper.This model also achieves excellent performance on two public single-intent joint training datasets,CAIS and SNIPS.展开更多
基金Supported by the National Nature Science Foundation of China(62462037,62462036)Project for Academic and Technical Leader in Major Disciplines in Jiangxi Province(20232BCJ22013)+1 种基金Jiangxi Provincial Natural Science Foundation(20242BAB26017,20232BAB202010)Jiangxi Province Graduate Innovation Fund Project(YC2023-S320)。
文摘Intent detection and slot filling are two important components of natural language understanding.Because their relevance,joint training is often performed to improve performance.Existing studies mostly use a joint model of multi-intent detection and slot-filling with unidirectional interaction,which improves the overall performance of the model by fusing the intent information in the slot-filling part.On this basis,in order to further improve the overall performance of the model by exploiting the correlation between the two,this paper proposes a joint multi-intent detection and slot-filling model based on a bidirectional interaction structure,which fuses the intent encoding information in the encoding part of slot filling and fuses the slot decoding information in the decoding part of intent detection.Experimental results on two public multi-intent joint training datasets,MixATIS and MixSNIPS,show that the bidirectional interaction structure proposed in this paper can effectively improve the performance of the joint model.In addition,in order to verify the generalization of the bidirectional interaction structure between intent and slot,a joint model for single-intent scenarios is proposed on the basis of the model in this paper.This model also achieves excellent performance on two public single-intent joint training datasets,CAIS and SNIPS.