Quantitative thickness estimation below tuning thickness is a great challenge in seismic exploration. Most studies focus on the thin-beds whose top and bottom reflection coefficients are of equal magnitude and opposit...Quantitative thickness estimation below tuning thickness is a great challenge in seismic exploration. Most studies focus on the thin-beds whose top and bottom reflection coefficients are of equal magnitude and opposite polarity. There is no systematic research on the other thin-bed types. In this article, all of the thin-beds are classified into four types: thin-beds with equal magnitude and opposite polarity, thin-beds with unequal magnitude and opposite polarity, thin-beds with equal magnitude and identical polarity, and thin-beds with unequal magnitude and identical polarity. By analytical study, an equation describing the general relationship between seismic peak frequency and thin-bed thickness was derived which shows there is a Complex implicit non-linear relationship between them and which is difficult to use in practice. In order to solve this problem, we simplify the relationship by Taylor expansion and discuss the precision of the approximation formulae with different orders for the four types of thin-beds. Compared with the traditional amplitude method for thin-bed thickness calculation, the method we present has a higher precision and isn't influenced by the absolute value of top or bottom reflection coefficient, so it is convenient for use in practice.展开更多
We report the investigation on the low-temperature oxidation of cyclohexane in a jet-stirred reactor over 500-742 K. Synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) was used for identify...We report the investigation on the low-temperature oxidation of cyclohexane in a jet-stirred reactor over 500-742 K. Synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) was used for identifying and quantifying the oxidation species. Major products, cyclic olefins, and oxygenated products including reactive hydroperoxides and high oxygen compounds were detected. Compared with n-alkanes, a narrow low-temperature window (-80 K) was observed in the low-temperature oxidation of cyclohexane. Besides, a kinetic model for cyclohexane oxidation was developed based on the CNRS model [Combust. Flame 160, 2319 (2013)], which can better capture the experimental results than previous models. Based on the modeling analysis, the 1,5-H shift dominates the crucial isomerization steps of the first and second O2 addition products in the low-temperature chain branching process of cyclohexane. The negative temperature coefficient behavior of cyclohexane oxidation results from the reduced chain branching due to the competition from chain inhibition and propagation reactions, i.e. the reaction between cyclohexyl radical and O2 and the de- composition of cyclohexylperoxy radical, both producing cyclohexene and HO2 radical, as well as the decomposition of cyclohexylhydroperoxy radical producing hex-5-en-l-al and OH radical.展开更多
The residue curve maps are considered as a powerful tool for the preliminary design of reactive distillation. The residue curve maps of ethyl acetate synthesis reaction were calculated based on the pseudo-homogeneous ...The residue curve maps are considered as a powerful tool for the preliminary design of reactive distillation. The residue curve maps of ethyl acetate synthesis reaction were calculated based on the pseudo-homogeneous rate-based kinetic model and the NRTL activity coefficient model. The results show that the unstable node branch emerges from the ethyl acetate/water edge, moving toward the chemical equilibrium surface with the increase of Damkoeler value (D), and the node reaches the ternary reactive azeotrope when D-∞ eventually. Conceptual design for the ethyl acetate synthesis of reactive distillation based on the residue curve maps is presented at last.展开更多
To improve the deficiency of the control system of finish cooling temperature (FCT), a new model developed from a combination of a multilayer perception neural network as the self-learning system and traditional mathe...To improve the deficiency of the control system of finish cooling temperature (FCT), a new model developed from a combination of a multilayer perception neural network as the self-learning system and traditional mathematical model were brought forward to predict the plate FCT. The relationship between the self-learning factor of heat transfer coefficient and its influencing parameters such as plate thickness, start cooling temperature, was investigated. Simulative calculation indicates that the deficiency of FCT control system is overcome completely, the accuracy of FCT is obviously improved and the difference between the calculated and target FCT is controlled between -15 ℃ and 15 ℃.展开更多
The authors investigate an inverse problem of determining the radiative coefficient in a degenerate parabolic equation from the final overspecified data. Being different from other inverse coefficient problems in whic...The authors investigate an inverse problem of determining the radiative coefficient in a degenerate parabolic equation from the final overspecified data. Being different from other inverse coefficient problems in which the principle coefficients are assumed to be strictly positive definite, the mathematical model discussed in this paper belongs to the second order parabolic equations with non-negative characteristic form, namely, there exists a degeneracy on the lateral boundaries of the domain. Based on the optimal control framework, the problem is transformed into an optimization problem and the existence of the minimizer is established. After the necessary conditions which must be satisfied by the minimizer are deduced, the uniqueness and stability of the minimizer are proved. By minor modification of the cost functional and some a priori regularity conditions imposed on the forward operator, the convergence of the minimizer for the noisy input data is obtained in this paper. The results can be extended to more general degenerate parabolic equations.展开更多
A novel miniature Fabry-Perot interferometric(FPI) temperature sensor is proposed and demonstrated experimentally. The modal interferometer is fabricated by just splicing a section of photonic crystal fiber(PCF) with ...A novel miniature Fabry-Perot interferometric(FPI) temperature sensor is proposed and demonstrated experimentally. The modal interferometer is fabricated by just splicing a section of photonic crystal fiber(PCF) with a single-mode fiber(SMF). The air holes of the PCF are fully collapsed by the discharge arc during the splicing procedure to enhance the reflection coefficient of the splicing point. The transmission spectra with different temperatures are measured, and the experimental results show that the linear response of 11.12 pm/°C in the range of 30–80 °C is obtained. This sensor has potential applications in temperature measurement field.展开更多
基金supported by National Key S&T Special Projects of Marine Carbonate 2008ZX05000-004CNPC Projects 2008E-0610-10
文摘Quantitative thickness estimation below tuning thickness is a great challenge in seismic exploration. Most studies focus on the thin-beds whose top and bottom reflection coefficients are of equal magnitude and opposite polarity. There is no systematic research on the other thin-bed types. In this article, all of the thin-beds are classified into four types: thin-beds with equal magnitude and opposite polarity, thin-beds with unequal magnitude and opposite polarity, thin-beds with equal magnitude and identical polarity, and thin-beds with unequal magnitude and identical polarity. By analytical study, an equation describing the general relationship between seismic peak frequency and thin-bed thickness was derived which shows there is a Complex implicit non-linear relationship between them and which is difficult to use in practice. In order to solve this problem, we simplify the relationship by Taylor expansion and discuss the precision of the approximation formulae with different orders for the four types of thin-beds. Compared with the traditional amplitude method for thin-bed thickness calculation, the method we present has a higher precision and isn't influenced by the absolute value of top or bottom reflection coefficient, so it is convenient for use in practice.
基金supported by the National Natural Science Foundation of China(No.91641205,No.51622605,No.91541201)the Shanghai Science and Technology Committee(No.17XD1402000)
文摘We report the investigation on the low-temperature oxidation of cyclohexane in a jet-stirred reactor over 500-742 K. Synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) was used for identifying and quantifying the oxidation species. Major products, cyclic olefins, and oxygenated products including reactive hydroperoxides and high oxygen compounds were detected. Compared with n-alkanes, a narrow low-temperature window (-80 K) was observed in the low-temperature oxidation of cyclohexane. Besides, a kinetic model for cyclohexane oxidation was developed based on the CNRS model [Combust. Flame 160, 2319 (2013)], which can better capture the experimental results than previous models. Based on the modeling analysis, the 1,5-H shift dominates the crucial isomerization steps of the first and second O2 addition products in the low-temperature chain branching process of cyclohexane. The negative temperature coefficient behavior of cyclohexane oxidation results from the reduced chain branching due to the competition from chain inhibition and propagation reactions, i.e. the reaction between cyclohexyl radical and O2 and the de- composition of cyclohexylperoxy radical, both producing cyclohexene and HO2 radical, as well as the decomposition of cyclohexylhydroperoxy radical producing hex-5-en-l-al and OH radical.
基金Project(2008-XY-6) supported by the Development of Science and Technology Start-up Fund of Fuzhou University, ChinaProject(XRC-0826) supported by the Talents Fund of Fuzhou University, China
文摘The residue curve maps are considered as a powerful tool for the preliminary design of reactive distillation. The residue curve maps of ethyl acetate synthesis reaction were calculated based on the pseudo-homogeneous rate-based kinetic model and the NRTL activity coefficient model. The results show that the unstable node branch emerges from the ethyl acetate/water edge, moving toward the chemical equilibrium surface with the increase of Damkoeler value (D), and the node reaches the ternary reactive azeotrope when D-∞ eventually. Conceptual design for the ethyl acetate synthesis of reactive distillation based on the residue curve maps is presented at last.
基金Projects(50634030) supported by the National Natural Science Foundation of China
文摘To improve the deficiency of the control system of finish cooling temperature (FCT), a new model developed from a combination of a multilayer perception neural network as the self-learning system and traditional mathematical model were brought forward to predict the plate FCT. The relationship between the self-learning factor of heat transfer coefficient and its influencing parameters such as plate thickness, start cooling temperature, was investigated. Simulative calculation indicates that the deficiency of FCT control system is overcome completely, the accuracy of FCT is obviously improved and the difference between the calculated and target FCT is controlled between -15 ℃ and 15 ℃.
基金supported by the National Natural Science Foundation of China(Nos.11061018,11261029)the Youth Foundation of Lanzhou Jiaotong University(No.2011028)+1 种基金the Long Yuan Young Creative Talents Support Program(No.252003)the Joint Funds of the Gansu Provincial Natural Science Foundation of China(No.1212RJZA043)
文摘The authors investigate an inverse problem of determining the radiative coefficient in a degenerate parabolic equation from the final overspecified data. Being different from other inverse coefficient problems in which the principle coefficients are assumed to be strictly positive definite, the mathematical model discussed in this paper belongs to the second order parabolic equations with non-negative characteristic form, namely, there exists a degeneracy on the lateral boundaries of the domain. Based on the optimal control framework, the problem is transformed into an optimization problem and the existence of the minimizer is established. After the necessary conditions which must be satisfied by the minimizer are deduced, the uniqueness and stability of the minimizer are proved. By minor modification of the cost functional and some a priori regularity conditions imposed on the forward operator, the convergence of the minimizer for the noisy input data is obtained in this paper. The results can be extended to more general degenerate parabolic equations.
基金supported by the National Natural Science Foundation of China(Nos.61205068 and 61475133)the College Youth Talent Project of Hebei Province(No.BJ2014057)"Xin Rui Gong Cheng"Talent Project and the Excellent Youth Funds for School of Information Science and Engineering in Yanshan University(No.2014201)
文摘A novel miniature Fabry-Perot interferometric(FPI) temperature sensor is proposed and demonstrated experimentally. The modal interferometer is fabricated by just splicing a section of photonic crystal fiber(PCF) with a single-mode fiber(SMF). The air holes of the PCF are fully collapsed by the discharge arc during the splicing procedure to enhance the reflection coefficient of the splicing point. The transmission spectra with different temperatures are measured, and the experimental results show that the linear response of 11.12 pm/°C in the range of 30–80 °C is obtained. This sensor has potential applications in temperature measurement field.