URX gas Carburizing is an accelerated gas Carburizing method with 50% CO + 50% H2 gas which comes from CFLt gas + CO2 gas. By using this gas composition, the Carburizing reaction rate increases to the maximum and the ...URX gas Carburizing is an accelerated gas Carburizing method with 50% CO + 50% H2 gas which comes from CFLt gas + CO2 gas. By using this gas composition, the Carburizing reaction rate increases to the maximum and the controllability of carbon potential improves. A carbon mass flow rate is the product of the Carburizing reaction rate multiplied by the difference of carbon percent between carbon potential of the gas and the carbon content of the surface of treated steel parts. We have obtained excellent results from the experimental tests at our laboratory as mentioned bellow. 1) Carburizing time can be shortened by 40% for 0.5 - 0.9 mm effective case depth. 2) Uniform Carburizing case depth 3) Less internal oxidation with the same case depth. We have already developed the new roller hearth type continuous Carburizing furnace and the new URX gas generator .展开更多
The ring-polymer molecular dynamics(RPMD)was used to calculate the thermal rate coefficients of the multi-channel roaming reaction H+MgH→Mg+H_(2).Two reaction channels,tight and roaming,are explicitly considered.This...The ring-polymer molecular dynamics(RPMD)was used to calculate the thermal rate coefficients of the multi-channel roaming reaction H+MgH→Mg+H_(2).Two reaction channels,tight and roaming,are explicitly considered.This is a pioneering attempt of exerting RPMD method to multichannel reactions.With the help of a newly developed optimization-interpolation protocol for preparing the initial structures and adaptive protocol for choosing the force constants,we have successfully obtained the thermal rate coefficients.The results are consistent with those from other theoretical methods,such as variational transition state theory and quantum dynamics.Especially,RPMD results exhibit negative temperature dependence,which is similar to the results from variational transition state theory but different from the ones from ground state quantum dynamics calculations.展开更多
A multi-tube air-lift loop reactor (MT-ALR) is presented in this paper. Based on the energy conservation, a mathematical model describing the liquid circulation flow rate was developed, which was determined by gas vel...A multi-tube air-lift loop reactor (MT-ALR) is presented in this paper. Based on the energy conservation, a mathematical model describing the liquid circulation flow rate was developed, which was determined by gas velocity, the cross areas of riser and downcomer, gas hold-up and the local frictional loss coefficient. The experimental data indicate that either increase of gas flow rate or reduction of the downcomer diameter contributes to higher liquid circulation rate. The correlation between total and the local frictional loss coefficients was also established.Effects of gas flowrate in two risers and diameter of downcomer on the liquid circulation rate were examined. The value of total frictional loss coefficient was measured as a function of the cross area of downcomer and independent of the gas flow rate. The calculated results of liquid circulation rates agreed well with the experimental data with an average relative error of 9.6%.展开更多
文摘URX gas Carburizing is an accelerated gas Carburizing method with 50% CO + 50% H2 gas which comes from CFLt gas + CO2 gas. By using this gas composition, the Carburizing reaction rate increases to the maximum and the controllability of carbon potential improves. A carbon mass flow rate is the product of the Carburizing reaction rate multiplied by the difference of carbon percent between carbon potential of the gas and the carbon content of the surface of treated steel parts. We have obtained excellent results from the experimental tests at our laboratory as mentioned bellow. 1) Carburizing time can be shortened by 40% for 0.5 - 0.9 mm effective case depth. 2) Uniform Carburizing case depth 3) Less internal oxidation with the same case depth. We have already developed the new roller hearth type continuous Carburizing furnace and the new URX gas generator .
基金supported by the National Natural Science Foundation of China(No.21503130 and No.11674212,and No.21603144)supported by the Young Eastern Scholar Program of the Shanghai Municipal Education Commission(QD2016021)+1 种基金the Shanghai Key Laboratory of High Temperature Superconductors(No.14DZ2260700)supported by Shanghai Sailing Program(No.2016YF1408400).
文摘The ring-polymer molecular dynamics(RPMD)was used to calculate the thermal rate coefficients of the multi-channel roaming reaction H+MgH→Mg+H_(2).Two reaction channels,tight and roaming,are explicitly considered.This is a pioneering attempt of exerting RPMD method to multichannel reactions.With the help of a newly developed optimization-interpolation protocol for preparing the initial structures and adaptive protocol for choosing the force constants,we have successfully obtained the thermal rate coefficients.The results are consistent with those from other theoretical methods,such as variational transition state theory and quantum dynamics.Especially,RPMD results exhibit negative temperature dependence,which is similar to the results from variational transition state theory but different from the ones from ground state quantum dynamics calculations.
基金Supported by Liaoning Provincial Natural Science Foundation(No.972050).
文摘A multi-tube air-lift loop reactor (MT-ALR) is presented in this paper. Based on the energy conservation, a mathematical model describing the liquid circulation flow rate was developed, which was determined by gas velocity, the cross areas of riser and downcomer, gas hold-up and the local frictional loss coefficient. The experimental data indicate that either increase of gas flow rate or reduction of the downcomer diameter contributes to higher liquid circulation rate. The correlation between total and the local frictional loss coefficients was also established.Effects of gas flowrate in two risers and diameter of downcomer on the liquid circulation rate were examined. The value of total frictional loss coefficient was measured as a function of the cross area of downcomer and independent of the gas flow rate. The calculated results of liquid circulation rates agreed well with the experimental data with an average relative error of 9.6%.