期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Q—学习的超启发式模型及算法求解多模式资源约束项目调度问题 被引量:5
1
作者 崔建双 吕玥 徐子涵 《计算机集成制造系统》 EI CSCD 北大核心 2022年第5期1472-1481,共10页
为了更好地解决传统的元启发式算法机制单一和面向问题定制不足等问题,提高算法的整体通用性,本文提出一种基于Q—学习的超启发式模型,并基于该模型设计实现了一种超启发式算法,求解多模式资源约束项目调度问题(MRCPSP)。该模型架构分... 为了更好地解决传统的元启发式算法机制单一和面向问题定制不足等问题,提高算法的整体通用性,本文提出一种基于Q—学习的超启发式模型,并基于该模型设计实现了一种超启发式算法,求解多模式资源约束项目调度问题(MRCPSP)。该模型架构分为高低两层,低层由具有多种异构机制和不同参数的元启发式算子组成,高层则依据Q—学习策略自动选择低层算子。模型将多种优秀的元启发式算法与反馈—学习强化机制有机整合,具备灵活的可扩展性。为检验算法效果,从MRCPSP标杆算例库中选取了上千个规模不等的算例,设计了等价比较实验环节,并与最新公开文献提供的结果进行了比较。结果表明,基于Q—学习的超启发式算法在目标值、通用性、鲁棒性等多项性能指标上均表现优异,可以借鉴应用到其他各种组合优化问题。值得一提的是,针对J30算例的计算结果有多达41个算例获得了比当前公开文献报告的已知最优解更好的结果。 展开更多
关键词 超启发式模型 强化学习 Q—学习 多模式资源约束项目调度问题 元启发式算法 反馈—学习强化机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部