期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
VDBSCAN:变密度聚类算法 被引量:22
1
作者 周董 刘鹏 《计算机工程与应用》 CSCD 北大核心 2009年第11期137-141,153,共6页
传统的密度聚类算法不能识别并聚类多个不同密度的簇。对此提出了变密度聚类算法VDBSCAN,针对密度不稳定的数据集,可有效识别并同时聚类不同密度的簇,避免合并和遗漏。VDBSCAN算法的基本思想是:根据k-dist图和DK分析,对数据集中的不同... 传统的密度聚类算法不能识别并聚类多个不同密度的簇。对此提出了变密度聚类算法VDBSCAN,针对密度不稳定的数据集,可有效识别并同时聚类不同密度的簇,避免合并和遗漏。VDBSCAN算法的基本思想是:根据k-dist图和DK分析,对数据集中的不同密度层次自动选择一组Eps值,分别调用DBSCAN算法。不同的Eps值,能够找到不同密度的簇。4个二维数据集实验验证了VDB-SCAN算法的有效性,表明VDBSCAN算法可以有效地聚类密度不均匀的数据集,且参数Eps的自动选择方法也是有效的和健壮的。 展开更多
关键词 变密度聚类算法 基于密度 DBSCAN 数据挖掘
在线阅读 下载PDF
A heuristic clustering algorithm based on high density-connected partitions
2
作者 Yuan Lufeng Yao Erlin Tan Guangming 《High Technology Letters》 EI CAS 2018年第2期149-155,共7页
Clustering data with varying densities and complicated structures is important,while many existing clustering algorithms face difficulties for this problem. The reason is that varying densities and complicated structu... Clustering data with varying densities and complicated structures is important,while many existing clustering algorithms face difficulties for this problem. The reason is that varying densities and complicated structure make single algorithms perform badly for different parts of data. More intensive parts are assumed to have more information probably,an algorithm clustering from high density part is proposed,which begins from a tiny distance to find the highest density-connected partition and form corresponding super cores,then distance is iteratively increased by a global heuristic method to cluster parts with different densities. Mean of silhouette coefficient indicates the cluster performance. Denoising function is implemented to eliminate influence of noise and outliers. Many challenging experiments indicate that the algorithm has good performance on data with widely varying densities and extremely complex structures. It decides the optimal number of clusters automatically.Background knowledge is not needed and parameters tuning is easy. It is robust against noise and outliers. 展开更多
关键词 heuristic clustering density-based spatial clustering of applications with noise( DBSCAN) density-based clustering agglomerative clustering machine learning high density-connected partitions optimal clustering number
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部