期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于NSGM-ARIMA变权组合模型的粮食产量预测——以1983-2022年的湖南省统计年鉴数据为例
1
作者 苑慧芳 赵学超 《枣庄学院学报》 2025年第2期25-36,共12页
粮食产量预测是保障国家粮食安全和为稳定市场供应的重要依据,且播种面积是影响产量的重要因素。以湖南省粮食产量数据为例,首先,建立粮食产量与播种面积之间的新结构多变量灰色预测模型(new structure multi-variable grey prediction ... 粮食产量预测是保障国家粮食安全和为稳定市场供应的重要依据,且播种面积是影响产量的重要因素。以湖南省粮食产量数据为例,首先,建立粮食产量与播种面积之间的新结构多变量灰色预测模型(new structure multi-variable grey prediction model,NSGM)和差分自回归移动平均预测模型(autoregressive integrated moving average model,ARIMA),并对模型进行分析;其次,在残差变权法的基础上,基于NSGM-ARIMA模型提出一种新的变权组合预测方法用于预测;最后,将新的变权方法与单个模型、等权组合法和残差变权法进行比较说明所提变权方法的有效性,可作为粮食产量短期预测的有效工具。 展开更多
关键词 NSGM模型 ARIMA模型 残差 变权组合预测法
在线阅读 下载PDF
基于LSTM变权组合模型的股价预测 被引量:4
2
作者 王文姣 张娜 《商展经济》 2023年第7期95-97,共3页
为提高股票价格的准确预测,帮助投资者实现科学理性的投资决策,本文提出以沪深300指数收盘价为预测对象,以经灰色关联分析(GRA)和主成分分析(PCA)处理后的特征指标为输入变量,利用误差倒数变权组合预测法对经过网格搜索法和粒子群算法... 为提高股票价格的准确预测,帮助投资者实现科学理性的投资决策,本文提出以沪深300指数收盘价为预测对象,以经灰色关联分析(GRA)和主成分分析(PCA)处理后的特征指标为输入变量,利用误差倒数变权组合预测法对经过网格搜索法和粒子群算法优化后的传统机器学习模型(RFR、SVR)和长短记忆神经网络(LSTM)模型进行加权组合实现最终预测,构建了基于GRA-PCA-LSTM的变权组合模型,并依据模型评价指标对比分析单一模型和其他方式组合模型的预测结果。实验结果表明:LSTM模型的预测效果优于传统机器学习模型;SVR-LSTM(Variable)模型在RMSE、MAPE与R2三个评价指标上的预测精度均优于SVR-LSTM(Equal)、SVR-LSTM(Error)及其对应的单一模型。同时,本文利用其他数据集进一步验证了基于GRA-PCA-LSTM的变权组合模型,可以提高股指价格的预测性能。 展开更多
关键词 GRA PCA LSTM 误差倒数变权组合预测法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部