期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
变系数函数方程解的振动准则 被引量:14
1
作者 周勇 刘正荣 俞元洪 《应用数学学报》 CSCD 北大核心 2000年第3期413-419,共7页
本文建立了一类交系数非线性函数方程一切解振动的几个充分条件,并且给出了它们在差分方程中的若干应用.本文的结果改进和推广了近期文献的某些结果.
关键词 非线性 振动准则 变系数函数方程 差分方程
原文传递
变系数KP方程新的类孤波解和解析解 被引量:21
2
作者 毛杰健 杨建荣 《物理学报》 SCIE EI CAS CSCD 北大核心 2005年第11期4999-5002,共4页
用普通Sine-Gordon的行波变换方程,提出了一种新的求解变系数Kaolomtsev-Petviashvili(KP)方程的方法,获得了变系数KP方程新的类孤波解、类Jacobi椭圆函数解和三角函数解.
关键词 系数KP方程 Sine-Gordon方程 类椭圆函数 类孤波解 KP方程 类孤波解 系数 解析解 Jacobi 三角函数 椭圆函数 方程 求解
原文传递
Exact Solutions for a Nonisospectral and Variable-Coefficient KdV Equation 被引量:1
3
作者 DENGShu-Fang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第6期961-964,共4页
The bilinear form for a nonisospectral and variable-coefficient KdV equation is obtained and some exact soliton solutions are derived through Hirota method and Wronskian technique. We also derive the bilmear transform... The bilinear form for a nonisospectral and variable-coefficient KdV equation is obtained and some exact soliton solutions are derived through Hirota method and Wronskian technique. We also derive the bilmear transformation from its Lax pairs and End solutions with the help of the obtained bilinear transformation. 展开更多
关键词 nonisospectral and variable-coefficient KdV equation Hirota method Wronskian technique TRANSFORMATION
在线阅读 下载PDF
Explicit Solutions of (2+1)-Dimensional Canonical Generalized KP, KdV, and (2+1)-Dimensional Burgers Equations with Variable Coefficients
4
作者 ZHANG Lin-Lin LIU Xi-Qiang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第11期784-790,共7页
In this paper, using the generalized (G1/G)-expansion method and the auxiliary differential equation method, we discuss the (2+1)-dimensional canonical generalized KP (CGKP), KdV, and (2+1)-dimensional Burge... In this paper, using the generalized (G1/G)-expansion method and the auxiliary differential equation method, we discuss the (2+1)-dimensional canonical generalized KP (CGKP), KdV, and (2+1)-dimensional Burgers equations with variable coetticients. Many exact solutions of the equations are obtained in terms of elliptic functions, hyperbolic functions, trigonometric functions, and rational functions. 展开更多
关键词 generalized (G1/G)-expansion method auxiliary equation exact solution
在线阅读 下载PDF
New Exact Solutions to (2+1)-Dimensional Variable Coefficients Broer-Kaup Equations
5
作者 ZHU Jia-Min 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第3X期393-396,共4页
In this paper, using the variable coefficient generalized projected Rieatti equation expansion method, we present explicit solutions of the (2+1)-dimensional variable coefficients Broer-Kaup (VCBK) equations. The... In this paper, using the variable coefficient generalized projected Rieatti equation expansion method, we present explicit solutions of the (2+1)-dimensional variable coefficients Broer-Kaup (VCBK) equations. These solutions include Weierstrass function solution, solitary wave solutions, soliton-like solutions and trigonometric function solutions. Among these solutions, some are found for the first time. Because of the three or four arbitrary functions, rich localized excitations can be found. 展开更多
关键词 variable coefficient generalized projected Ricatti equation method (2+l)-dimensional variable coefficients Broer-Kaup equations Weierstrass function solution solitary wave solution trigonometric function solution
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部