Two-mode circular states,which are superposition states from some two-mode coherent states,are studiedtheoretically.It is shown that under certain conditions two-mode circular states may exhibit nonclassical effects,s...Two-mode circular states,which are superposition states from some two-mode coherent states,are studiedtheoretically.It is shown that under certain conditions two-mode circular states may exhibit nonclassical effects,suchas sub-Poissonian statistics and intermode correlation.We propose schemes to generate two-mode circular states by theinteraction of a trapped ion with traveling wave lasers.展开更多
A powerful approach to generate multilevel superposition state in A-type manifold of levels is proposed. In the analysis, we introduce a group of rotations to transform the coupled system to a simpler form, which invo...A powerful approach to generate multilevel superposition state in A-type manifold of levels is proposed. In the analysis, we introduce a group of rotations to transform the coupled system to a simpler form, which involves one coupled and several decoupled, dark states in the ground state manifold. Then an arbitrary superposition state of initial and final states can be created. In particular, when the Rabi frequencies of the Stokes pulses have equal magnitudes, a superposition state (equal population of the (n - 2) superposition states) will be generated. A numerical simulation of coherence generation is given. It is shown that a small transient population in metastable state decreases as the intensity of Stokes pulses increases. Experimental implementation in Neon atom is given.展开更多
The classical adiabatic approximation theory gives an adiabatic approximate solution to the Schr6dinger equation (SE) by choosing a single eigenstate of the Hamiltonian as the initial state. The superposition princi...The classical adiabatic approximation theory gives an adiabatic approximate solution to the Schr6dinger equation (SE) by choosing a single eigenstate of the Hamiltonian as the initial state. The superposition principle of quantum states enables us to mathematically discuss the exact solution to the SE starting from a superposition of two different eigenstates of the time-dependent Hamiltonian H(0). Also, we can construct an approximate solution to the SE in terms of the corresponding instantaneous eigenstates of H(t). On the other hand, any physical experiment may bring errors so that the initial state (input state) may be a superposition of different eigenstates, not just at the desired eigenstate. In this paper, we consider the generalized adiabatic evolution of a quantum system starting from a superposition of two different eigenstates of the Hamiltonian at t = 0. A generalized adiabatic approximate solution (GAAS) is constructed and an upper bound for the generalized adiabatic approximation error is given. As an application, the fidelity of the exact solution and the GAAS is estimated.展开更多
基金supported by the Natural Science Foundation of the Education Committee of Anhui Province of China under Grant No.JK2008A029
文摘Two-mode circular states,which are superposition states from some two-mode coherent states,are studiedtheoretically.It is shown that under certain conditions two-mode circular states may exhibit nonclassical effects,suchas sub-Poissonian statistics and intermode correlation.We propose schemes to generate two-mode circular states by theinteraction of a trapped ion with traveling wave lasers.
文摘A powerful approach to generate multilevel superposition state in A-type manifold of levels is proposed. In the analysis, we introduce a group of rotations to transform the coupled system to a simpler form, which involves one coupled and several decoupled, dark states in the ground state manifold. Then an arbitrary superposition state of initial and final states can be created. In particular, when the Rabi frequencies of the Stokes pulses have equal magnitudes, a superposition state (equal population of the (n - 2) superposition states) will be generated. A numerical simulation of coherence generation is given. It is shown that a small transient population in metastable state decreases as the intensity of Stokes pulses increases. Experimental implementation in Neon atom is given.
基金supported by the National Natural Science Foundation of China(Grant Nos.11371012,11171197 and 11401359)the Innovation Fund Project for Graduate Program of Shaanxi Normal University(GrantNo.2013CXB012)+2 种基金the Fundamental Research Funds for the Central Universities(Grant Nos.GK201301007 and GK201404001)the Science Foundation of Weinan Normal University(Grant No.14YKS006)the Foundation of Mathematics Subject of Shaanxi Province(Grant No.14SXZD009)
文摘The classical adiabatic approximation theory gives an adiabatic approximate solution to the Schr6dinger equation (SE) by choosing a single eigenstate of the Hamiltonian as the initial state. The superposition principle of quantum states enables us to mathematically discuss the exact solution to the SE starting from a superposition of two different eigenstates of the time-dependent Hamiltonian H(0). Also, we can construct an approximate solution to the SE in terms of the corresponding instantaneous eigenstates of H(t). On the other hand, any physical experiment may bring errors so that the initial state (input state) may be a superposition of different eigenstates, not just at the desired eigenstate. In this paper, we consider the generalized adiabatic evolution of a quantum system starting from a superposition of two different eigenstates of the Hamiltonian at t = 0. A generalized adiabatic approximate solution (GAAS) is constructed and an upper bound for the generalized adiabatic approximation error is given. As an application, the fidelity of the exact solution and the GAAS is estimated.