期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
基于改进合成少数类过采样技术的非概率可靠性指标解 被引量:1
1
作者 张梦 陈旭勇 +1 位作者 彭元林 李书雅 《武汉工程大学学报》 CAS 2024年第2期231-236,共6页
当结构的功能函数呈现高度非线性、极限状态曲面为多区域的情形时,现有算法无法有效求解非概率可靠性指标,为解决此类问题,将合成少数类过采样技术(SMOTE)进行改进,提出了基于改进SMOTE算法的非概率可靠性指标解法。首先基于非概率可靠... 当结构的功能函数呈现高度非线性、极限状态曲面为多区域的情形时,现有算法无法有效求解非概率可靠性指标,为解决此类问题,将合成少数类过采样技术(SMOTE)进行改进,提出了基于改进SMOTE算法的非概率可靠性指标解法。首先基于非概率可靠性指标的几何意义,将样本分类策略、超球限制策略与标准SMOTE算法相结合,提出了改进SMOTE算法来进一步提升算法在极限状态曲面附近的采样效率;然后结合改进SMOTE算法在标准化空间中高精度的拟合局部极限状态曲面,进而搜索得到非概率可靠性指标;最后给出了基于改进SMOTE算法的非概率可靠性指标解的主要流程。数值算例表明,当极限状态曲面呈现局部闭合、多区域的特点时,改进后的SMOTE算法可以高效地获取位于极限状态曲面附近的样本点,进而高精度地拟合极限状态曲面。将本文方法的计算结果与解析解对比,相对误差远远小于工程中的最大误差限值5%,说明改进SMOTE算法能够较好地处理高度非线性功能函数,验证了所提算法的有效性和实用性。 展开更多
关键词 非概率可靠性指标 合成少数过采样技术 样本分类策略 超球限制策略 极限状态曲面
在线阅读 下载PDF
基于遗传算法改进的少数类样本合成过采样技术的非平衡数据集分类算法 被引量:19
2
作者 霍玉丹 谷琼 +1 位作者 蔡之华 袁磊 《计算机应用》 CSCD 北大核心 2015年第1期121-124,139,共5页
针对少数类样本合成过采样技术(SMOTE)在处理非平衡数据集分类问题时,为少数类的不同样本设置相同的采样倍率,存在一定的盲目性的问题,提出了一种基于遗传算法(GA)改进的SMOTE方法——GASMOTE。首先,为少数类的不同样本设置不同的采样倍... 针对少数类样本合成过采样技术(SMOTE)在处理非平衡数据集分类问题时,为少数类的不同样本设置相同的采样倍率,存在一定的盲目性的问题,提出了一种基于遗传算法(GA)改进的SMOTE方法——GASMOTE。首先,为少数类的不同样本设置不同的采样倍率,并将这些采样倍率取值的组合编码为种群中的个体;然后,循环使用GA的选择、交叉、变异等算子对种群进行优化,在达到停机条件时获得采样倍率取值的最优组合;最后,根据找到的最优组合对非平衡数据集进行SMOTE采样。在10个典型的非平衡数据集上进行的实验结果表明:与SMOTE算法相比,GASMOTE在F-measure值上提高了5.9个百分点,在G-mean值上提高了1.6个百分点;与Borderline-SMOTE算法相比,GASMOTE在F-measure值上提高了3.7个百分点,在G-mean值上提高了2.3个百分点。该方法可作为一种新的解决非平衡数据集分类问题的过采样技术。 展开更多
关键词 非平衡数据集 分类 少数样本合成过采样技术 采样倍率 遗传算法
在线阅读 下载PDF
针对样本类不平衡的深度残差网络电力系统暂态稳定评估方法 被引量:1
3
作者 刘颂凯 党喜 +3 位作者 崔梓琪 杨超 阮肇华 袁铭洋 《智慧电力》 北大核心 2024年第1期116-123,共8页
系统的量测数据可能受到噪声以及样本类分布不平衡问题的影响,导致基于数据驱动的暂态稳定评估模型性能下降。提出一种针对样本类不平衡的的深度残差网络电力系统暂态稳定评估方法。首先,利用改进过采样技术为滤除噪声的少数类样本构造... 系统的量测数据可能受到噪声以及样本类分布不平衡问题的影响,导致基于数据驱动的暂态稳定评估模型性能下降。提出一种针对样本类不平衡的的深度残差网络电力系统暂态稳定评估方法。首先,利用改进过采样技术为滤除噪声的少数类样本构造所需的新样本,改善样本类不平衡问题,并减少噪声的影响;然后,基于深度残差网络构建电力系统暂态稳定评估模型,解决梯度消失导致的模型性能退化问题,提高模型的鲁棒性和准确性;最后,在新英格兰10机39节点和47机140节点系统上的仿真结果表明,所提方法能减小噪声干扰、降低不平衡数据集所带来的影响和减少计算复杂度。 展开更多
关键词 暂态稳定评估 噪声问题 样本类分布不平衡 改进合成少数过采样技术 深度残差网络
在线阅读 下载PDF
基于改进SMOTE不均衡样本处理和IHPO-DBN的变压器故障诊断方法研究 被引量:1
4
作者 周萱 吴伟丽 《电力系统保护与控制》 EI CSCD 北大核心 2024年第11期21-30,共10页
针对由于变压器故障样本不均衡和故障模型陷入局部最优而导致的分类准确率低的问题,提出了基于改进的合成少数类过采样技术和优化深度置信网络(deep belief network, DBN)的变压器故障诊断方法。首先采用聚类融合的K-means算法,通过分... 针对由于变压器故障样本不均衡和故障模型陷入局部最优而导致的分类准确率低的问题,提出了基于改进的合成少数类过采样技术和优化深度置信网络(deep belief network, DBN)的变压器故障诊断方法。首先采用聚类融合的K-means算法,通过分簇和匹配的方式筛选出不稳定的少数类样本用以改进中心点合成少数类过采样技术(center point synthetic minority oversampling technique, CP-SMOTE)算法,并对少数类样本进行扩增,解决了变压器故障数据分布不均衡的问题。其次,通过加入随机逆向学习和自适应惯性权重技术对猎食者优化算法进行改进,并用改进后的算法对DBN的内部参数进行优化调整,提高了模型精度。最后,将不同数据预处理情况下以及不同数据规模下的变压器故障模型进行仿真对比。结果表明,经过数据预处理和模型优化后的变压器故障识别准确率能够提高到98%,有效地解决了故障数据不平衡导致的分类精度低的问题。 展开更多
关键词 变压器故障诊断 不均衡样本 K-MEANS聚类 改进合成少数过采样 改进猎食者优化
在线阅读 下载PDF
一种基于SVM的非均衡数据集过采样方法 被引量:16
5
作者 张忠林 冯宜邦 赵中恺 《计算机工程与应用》 CSCD 北大核心 2020年第23期220-228,共9页
针对不平衡数据集分类结果偏向多数类的问题,重采样技术是解决此问题的有效方法之一。而传统过采样算法易合成无效样本,欠采样方法易剔除重要样本信息。基于此提出一种基于SVM的不平衡数据过采样方法SVMOM(Oversampling Method Based on... 针对不平衡数据集分类结果偏向多数类的问题,重采样技术是解决此问题的有效方法之一。而传统过采样算法易合成无效样本,欠采样方法易剔除重要样本信息。基于此提出一种基于SVM的不平衡数据过采样方法SVMOM(Oversampling Method Based on SVM)。SVMOM通过迭代合成样本。在迭代过程中,通过SVM得到分类超平面;根据每个少数类样本到分类超平面的距离赋予样本距离权重;同时考虑少数类样本的类内平衡,根据样本的分布计算样本的密度,赋予样本密度权重;依据样本的距离权重和密度权重计算每个少数类样本的选择权重,根据样本的选择权重选择样本运用SMOTE合成新样本,达到平衡数据集的目的。实验结果表明,提出的算法在一定程度上解决了分类结果偏向多数类的问题,验证了算法的有效性。 展开更多
关键词 不平衡数据 支持向量机(SVM) 过采样 样本权重 合成少数过采样技术(SMOTE)
在线阅读 下载PDF
不平衡样本下基于变异麻雀搜索算法和改进SMOTE的变压器故障诊断方法 被引量:6
6
作者 朱莉 汪小豪 +2 位作者 李豪 姜成龙 曹明海 《高电压技术》 EI CAS CSCD 北大核心 2023年第12期4993-5001,共9页
针对麻雀搜索算法同质化严重和变压器故障样本不平衡导致分类效果不佳的问题,提出了变异麻雀搜索算法优化支持向量机(variation sparrow search algorithm-support vector machine,VSSA-SVM)和改进合成少数过采样技术(improved syntheti... 针对麻雀搜索算法同质化严重和变压器故障样本不平衡导致分类效果不佳的问题,提出了变异麻雀搜索算法优化支持向量机(variation sparrow search algorithm-support vector machine,VSSA-SVM)和改进合成少数过采样技术(improved synthetic minority over-sampling technique,ISMOTE)的变压器故障诊断方法。首先使用Tomek Link对数据集进行去噪,引入中心偏移权重(center offset weight,COW)改进SMOTE算法对不平衡数据集的少数类样本进行合成,得到平衡化处理后的变压器故障数据集。然后,基于变异的思想,构建VSSA-SVM的变压器故障诊断模型。最后,在413例油浸变压器的油中溶解气体分析(dissoived gas anaiysis,DGA)数据上,使用PSO-SVM、SSA-SVM和VSSA-SVM模型进行诊断,诊断结果分别为81.45%、88.71%和96.77%,同时与SMOTE-NND、SVM SMOTE、Borderline-SMOTE、SMOTE以及原始数据集方法相比,ISMOTE分别提升了3.22%、4.03%、6.45%、7.52%、11.29%。结果表明,该文所提方法能准确判别变压器的故障状态,有效解决故障数据不平衡导致分类精度低的问题,具有一定的工程实用价值。 展开更多
关键词 变压器 故障诊断 不平衡样本 改进合成少数过采样 变异麻雀搜索算法
在线阅读 下载PDF
滑坡易发性评价中样本不均衡问题处理研究
7
作者 田尤 高波 +4 位作者 殷红 李元灵 张佳佳 陈龙 李洪梁 《水文地质工程地质》 CAS CSCD 北大核心 2024年第6期171-181,共11页
滑坡易发性评价中,样本不均衡问题的不同处理方案通常会带来评价结果的大量不确定性。针对这一问题,以藏东昌都市部分县(区)为研究区,构建滑坡/非滑坡样本不均衡数据集,采用不处理、下采样和合成少数类过采样(synthetic minority oversa... 滑坡易发性评价中,样本不均衡问题的不同处理方案通常会带来评价结果的大量不确定性。针对这一问题,以藏东昌都市部分县(区)为研究区,构建滑坡/非滑坡样本不均衡数据集,采用不处理、下采样和合成少数类过采样(synthetic minority oversampling technique,SMOTE)3种处置方案,运用逻辑回归方法分别构建滑坡易发性评价模型。基于ROC曲线、准确度、精确率、召回率、漏检率等评价指标,采用综合评价指标F_(1)′同数对模型分类的精度进行验证。结果表明:数据处理成均衡数据集(过采样/下采样)建立的模型效果较不处理数据建立的模型效果有了大幅提升,F_(1)′同数的值最大提高了53.17%;在下采样、过采样两种数据处理方案中,过采样方法比下采样方法F_(1)′分数的值提高了16.30%,表明过采样方法对处理样本不均衡数据问题方面具有较好效果。研究成果可为滑坡预测和地质灾害预测前的数据集处理提供参考,为进一步提高区域防灾减灾水平提供理论与技术支持。 展开更多
关键词 滑坡易发性 合成少数过采样技术 评价模型 昌都市 样本不均衡数据
在线阅读 下载PDF
基于SMOTE-SSA-CNN的开关柜故障诊断方法
8
作者 张玮 《电气传动》 2024年第10期83-89,共7页
开关柜多源监测数据包含丰富的设备运行状态信息,对其进行分析可实现开关柜故障诊断。提出一种基于SMOTE-SSA-CNN的开关柜故障诊断方法。首先,以开关柜电压、电流和温湿度等监测数据为基础,采用合成少数类样本过采样技术(SMOTE)算法对... 开关柜多源监测数据包含丰富的设备运行状态信息,对其进行分析可实现开关柜故障诊断。提出一种基于SMOTE-SSA-CNN的开关柜故障诊断方法。首先,以开关柜电压、电流和温湿度等监测数据为基础,采用合成少数类样本过采样技术(SMOTE)算法对原始数据集进行样本扩充,解决原始数据集中正负样本严重失衡的问题;然后引入麻雀搜索算法(SSA)对卷积神经网络(CNN)的卷积核大小与数量、全连接层神经元数量、学习率等超参数进行优化,提高模型故障诊断结果的准确率;最后,通过算例分析对建立的SMOTE-SSA-CNN模型性能进行评估,验证了所提方法对开关柜故障诊断的有效性,且与传统故障诊断方法相比,所提方法的收敛性较好,精度较高。 展开更多
关键词 开关柜 多源监测数据 合成少数样本过采样技术算法 麻雀搜索算法 卷积神经网络
在线阅读 下载PDF
基于改进深度降噪自编码网络的电网气象防灾方法 被引量:17
9
作者 丛伟 胡亮亮 +3 位作者 孙世军 韩洪 孙梦晨 王安宁 《电力系统自动化》 EI CSCD 北大核心 2019年第2期42-49,共8页
电网运维数据表明电网故障的主要原因已由电气设备制造工艺水平、现场运维水平等因素转向雷电、山火、大风、冰灾等自然气象因素,电网防灾减灾也应重点关注气象致灾。针对气象与电网故障之间的关联特点和规律,提出了一种基于改进深度降... 电网运维数据表明电网故障的主要原因已由电气设备制造工艺水平、现场运维水平等因素转向雷电、山火、大风、冰灾等自然气象因素,电网防灾减灾也应重点关注气象致灾。针对气象与电网故障之间的关联特点和规律,提出了一种基于改进深度降噪自编码(SDAE)网络的电网气象防灾方法。以气象历史数据和电网运维检修数据为基础,利用合成少数类样本过采样技术(SMOTE)降低原始数据集的不平衡度,自编码网络通过非监督自学习和有监督微调完成气象信息特征的提取和气象信息与电网故障映射关系的建立,并通过融入稀疏项限制和加噪编码来改善网络的鲁棒性。算例分析表明,所提出的基于SMOTE和SDAE的网络电网气象防灾方法,能够准确、全面地建立气象信息与电网故障之间的关联映射关系,能够对给定的气象条件是否会导致发生电网灾害事故进行准确的预判。 展开更多
关键词 气象信息 电网防灾减灾 电网故障 合成少数样本过采样技术 深度降噪自编码 深度学习
在线阅读 下载PDF
不平衡数据集分类方法综述 被引量:45
10
作者 王乐 韩萌 +2 位作者 李小娟 张妮 程浩东 《计算机工程与应用》 CSCD 北大核心 2021年第22期42-52,共11页
不平衡数据集的特点导致了在分类时产生了诸多难题。对不平衡数据集的分类方法进行了分析与总结。在数据采样方法中从欠采样、过采样和混合采样三方面介绍不平衡数据集的分类方法;在欠采样方法中分为基于K近邻、Bagging和Boosting三种方... 不平衡数据集的特点导致了在分类时产生了诸多难题。对不平衡数据集的分类方法进行了分析与总结。在数据采样方法中从欠采样、过采样和混合采样三方面介绍不平衡数据集的分类方法;在欠采样方法中分为基于K近邻、Bagging和Boosting三种方法;在过采样方法中从合成少数过采样技术(SyntheticMinorityOver-sampling Technology,SMOTE)、支持向量机(SupportVectorMachine,SVM)两个角度来分析不平衡数据集的分类方法;对这两类采样方法的优缺点进行了比较,在相同数据集下比较算法的性能并进行分析与总结。从深度学习、极限学习机、代价敏感和特征选择四方面对不平衡数据集的分类方法进行了归纳。最后对下一步工作方向进行了展望。 展开更多
关键词 不平衡数据集 分类 采样方法 K近邻(KNN) 合成少数过采样技术(SMOTE) 深度学习
在线阅读 下载PDF
考虑过采样器与分类器参数优化的变压器故障诊断策略 被引量:18
11
作者 栗磊 王廷涛 +3 位作者 赫嘉楠 牛健 梁亚波 苗世洪 《电力自动化设备》 EI CSCD 北大核心 2023年第1期209-217,共9页
变压器故障样本的不平衡性使得故障诊断分类准确率低,且容易弱化少数类故障样本的分类效果。对此,采用过采样方法实现故障样本的均衡化,并提出一种考虑过采样器与分类器参数优化的变压器故障诊断策略。首先,搭建变压器故障诊断模型的整... 变压器故障样本的不平衡性使得故障诊断分类准确率低,且容易弱化少数类故障样本的分类效果。对此,采用过采样方法实现故障样本的均衡化,并提出一种考虑过采样器与分类器参数优化的变压器故障诊断策略。首先,搭建变压器故障诊断模型的整体结构,阐述故障诊断的实现过程。在此基础上,提出诊断模型中过采样器、分类器、参数优化器3种主要环节的算法实现:针对过采样器,提出一种基于近邻分布特性的改进合成少数过采样算法实现故障样本的均衡化;针对分类器,采用层次式有向无环图支持向量机算法实现故障样本的多标签分类;针对参数优化器,提出一种双层参数优化方法,上层采用层次搜索算法对过采样倍率寻优,下层采用改进哈里斯鹰算法对支持向量机参数寻优。最后,对所提策略进行算例分析,结果表明,所提策略能够合成质量更高的少数类故障样本,实现故障样本的准确分类。 展开更多
关键词 电力变压器 故障诊断 不平衡样本 过采样 基于近邻分布特性的改进合成少数过采样 层次搜索-改进哈里斯鹰算法
在线阅读 下载PDF
基于SMOTE与LSTM的核电厂小样本不平衡故障诊断 被引量:1
12
作者 黄学颖 刘永阔 单龙飞 《应用科技》 CAS 2022年第1期94-98,共5页
由于小样本不平衡数据的存在,对核电厂故障诊断准确率造成极大的影响,针对核电厂小样本不平衡的问题,文中提出一种合成少数类过采样技术(SMOTE)与长短期记忆(LSTM)深度神经网络相结合的算法进行核电厂小样本不平衡故障诊断,实验结果表... 由于小样本不平衡数据的存在,对核电厂故障诊断准确率造成极大的影响,针对核电厂小样本不平衡的问题,文中提出一种合成少数类过采样技术(SMOTE)与长短期记忆(LSTM)深度神经网络相结合的算法进行核电厂小样本不平衡故障诊断,实验结果表明采用该方法进行故障诊断具有很高的诊断准确率。 展开更多
关键词 核电厂 样本 样本不平衡 过采样 合成少数过采样技术 特征提取 长短期记忆 故障诊断
在线阅读 下载PDF
基于SMOTE-IPF和SDAE的行星齿轮箱故障诊断方法研究 被引量:1
13
作者 赵亚磊 王友仁 +2 位作者 钱心筠 孙泽金 张鲁晋 《机械制造与自动化》 2023年第5期42-45,共4页
针对现有故障诊断模型在故障样本缺乏时诊断率低的问题,提出一种基于迭代过滤合成少数类过采样方法(SMOTE-IPF)和堆叠去噪自动编码器(SDAE)的故障诊断模型。该方法利用SDAE对样本进行特征提取,使用SMOTE-IPF在合成新样本的同时利用多个... 针对现有故障诊断模型在故障样本缺乏时诊断率低的问题,提出一种基于迭代过滤合成少数类过采样方法(SMOTE-IPF)和堆叠去噪自动编码器(SDAE)的故障诊断模型。该方法利用SDAE对样本进行特征提取,使用SMOTE-IPF在合成新样本的同时利用多个决策树对新样本进行投票过滤,使数据集达到平衡,最后使用分类器进行故障分类。通过行星齿轮实验平台进行实验,验证了所提方法在故障样本极度缺乏下故障诊断的有效性。 展开更多
关键词 故障诊断 样本不平衡 合成少数过采样技术 堆叠去噪自动编码器 行星齿轮箱
在线阅读 下载PDF
心血管事件患者术后30 d死亡风险决策树模型的构建与评估——基于少数类样本合成过采样技术算法
14
作者 陈永庄 莫小乔 谢天 《中华危重症医学杂志(电子版)》 CAS CSCD 2023年第5期390-398,共9页
目的:建立基于少数类样本合成过采样技术(SMOTE)算法的合并心血管事件行外科手术患者术后30 d死亡风险决策树模型。方法:选择新加坡中央医院2012年至2016年收入住院行手术治疗的华人患者,共纳入3086例合并心血管事件行外科手术患者(缺... 目的:建立基于少数类样本合成过采样技术(SMOTE)算法的合并心血管事件行外科手术患者术后30 d死亡风险决策树模型。方法:选择新加坡中央医院2012年至2016年收入住院行手术治疗的华人患者,共纳入3086例合并心血管事件行外科手术患者(缺血性心脏病史和/或充血性心力衰竭史患者),提取患者基本临床信息以及相关基础病和手术相关评分信息。采用SMOTE算法对原始数据集进行重建,并应用全子集回归筛选预测因子,将数据集按7∶3分为训练组和验证组,其中训练组用于建立决策树风险预测模型,验证组用于内部验证。结果:患者术后30 d病死率为3.0%(93/3086),术后24 h ICU入住率为4.5%(140/3086)。全子集回归分析显示年龄>75岁[比值比(OR)=1.033,95%置信区间(CI)(1.024,1.042),P<0.001]、贫血[OR=1.368,95%CI(1.211,1.546),P<0.001]、慢性肾脏病分期>2期[OR=1.381,95%CI(1.277,1.494),P<0.001]、术前输血[OR=4.496,95%CI(3.268,6.185),P<0.001]、急诊手术[OR=3.344,95%CI(2.752,4.064),P<0.001]、红细胞分布宽度>15.7%[OR=2.097,95%CI(1.658,2.652),P<0.001]及美国麻醉医师协会分级>2级[OR=3.362,95%CI(2.734,4.135),P<0.001]是心血管事件患者术后30 d死亡的危险因素。应用以上7个预测因子构建决策树模型。结果显示训练组受试者工作特征曲线下面积为0.853[95%CI(0.837,0.868),P<0.001],敏感度、特异度分别为0.765、0.756;验证组受试者工作特征曲线下面积为0.858[95%CI(0.834,0.882),P<0.001],敏感度、特异度分别为0.938、0.612,总体判别能力良好。结论:心血管事件患者术后30 d死亡事件发生率低,为不平衡数据分类问题,本研究基于处理不平衡数据常用的SMOTE算法,避免了小概率事件建模过程中的过拟合问题。同时决策树模型具有直观、便捷、个性化的特点,为医务工作者提供了方便的临床预测工具。 展开更多
关键词 少数样本合成过采样技术算法 术后死亡 全子集回归 预测模型 决策树
原文传递
用于不平衡类癌症数据的非标记检测和识别的SERS分析新策略
15
作者 曹大卫 徐慧英 +3 位作者 林合川 刘子洋 朱信忠 钱亚云 《浙江师范大学学报(自然科学版)》 CAS 2024年第3期257-265,共9页
SERS技术与机器学习结合的策略在检测和识别不平衡类癌症中发挥着极其重要的作用.为了解决类不平衡问题给分类精度造成的影响,设计了一种SERS技术结合APS-SMOTE-PCA-KNN(synthetic minority oversampling method with adaptive priority... SERS技术与机器学习结合的策略在检测和识别不平衡类癌症中发挥着极其重要的作用.为了解决类不平衡问题给分类精度造成的影响,设计了一种SERS技术结合APS-SMOTE-PCA-KNN(synthetic minority oversampling method with adaptive priority selection(APS-SMOTE)-principal component analysis(PCA)-k-nearest neighbors(KNN))的癌症诊断新策略,实现快速、灵敏、非标记地检测和识别癌症.结果显示:新策略能够测得健康人和癌症患者血清的特征光谱,很好地解决了类不平衡问题给分类精度造成的影响,准确率可以达到85.0%.SERS技术结合APS-SMOTE-PCA-KNN对于未来癌症诊断具有积极的借鉴意义. 展开更多
关键词 表面增强拉曼散射 癌症 不平衡类数据 特征峰 合成少数过采样方法
在线阅读 下载PDF
基于电机数据图像化的多时序变量间接卡车误吊起检测
16
作者 刘嘉杰 刘国平 胡文山 《计算机工程》 CAS CSCD 北大核心 2024年第10期370-380,共11页
自动化集装箱码头的装卸作业中经常发生集装箱与卡车同时被吊起的安全事故,导致人员伤亡及货品、车辆的损坏。为解决该问题,提出一种基于电机数据图像化处理的多时序变量间接卡车误吊起检测方法(MEIN)。该方法通过神经网络分析异步电机... 自动化集装箱码头的装卸作业中经常发生集装箱与卡车同时被吊起的安全事故,导致人员伤亡及货品、车辆的损坏。为解决该问题,提出一种基于电机数据图像化处理的多时序变量间接卡车误吊起检测方法(MEIN)。该方法通过神经网络分析异步电机在吊起集装箱和卡车的过程中产生的电流和电压异常,从而判断是否发生了误吊起事故。采集吊机的三相电流和电压数据,并基于物理公式进行特征工程计算出多个相关时序物理量,采用滑动窗口、SMOTE-Tomek综合采样的方式扩大样本总数并平衡类别数量,最后将多时序变量转换为图像的形式以EfficientNet进行分类。实验结果表明,该方法能在复杂的环境下(例如雨雾天气或轮胎被遮挡)保持稳定的检测性能,各测试地区的AUC均在0.997以上。相较于传统的基于激光雷达和计算机视觉的检测方法,MEIN方法具有成本低、精度高、计算量小并且抗环境干扰能力强等优点。该方法已在武汉、青岛、钦州、梅山等多地部署,为提高自动化集装箱码头的作业安全提供一种有效的解决方案。 展开更多
关键词 时间序列分类 卷积神经网络 合成少数样本过采样技术 Tomek Links欠采样技术 卡车误吊起检测
在线阅读 下载PDF
面向不平衡数据集的改进型SMOTE算法 被引量:26
17
作者 王超学 张涛 马春森 《计算机科学与探索》 CSCD 2014年第6期727-734,共8页
针对SMOTE(synthetic minority over-sampling technique)在合成少数类新样本时存在的不足,提出了一种改进的SMOTE算法GA-SMOTE。该算法的关键将是遗传算法中的3个基本算子引入到SMOTE中,利用选择算子实现对少数类样本有区别的选择,使... 针对SMOTE(synthetic minority over-sampling technique)在合成少数类新样本时存在的不足,提出了一种改进的SMOTE算法GA-SMOTE。该算法的关键将是遗传算法中的3个基本算子引入到SMOTE中,利用选择算子实现对少数类样本有区别的选择,使用交叉、变异算子实现对合成样本质量的控制。结合GA-SMOTE与SVM(support vector machine)算法来处理不平衡数据的分类问题。UCI数据集上的大量实验表明,GA-SMOTE在新样本的整体合成效果上表现出色,有效提高了SVM在不平衡数据集上的分类性能。 展开更多
关键词 不平衡数据集 分类 遗传算子 少数样本合成过采样技术(SMOTE) SYNTHETIC MINORITY OVER-SAMPLING technique (SMOTE)
在线阅读 下载PDF
基于主动学习SMOTE的非均衡数据分类 被引量:23
18
作者 张永 李卓然 刘小丹 《计算机应用与软件》 CSCD 北大核心 2012年第3期91-93,162,共4页
少数类样本合成过采样技术(SMOTE)是一种典型的过采样数据预处理方法,它能够有效平衡非均衡数据,但会带来噪音等问题,影响分类精度。为解决此问题,借助主动学习支持向量机的分类性能,提出一种基于主动学习SMOTE的非均衡数据分类方法 ALS... 少数类样本合成过采样技术(SMOTE)是一种典型的过采样数据预处理方法,它能够有效平衡非均衡数据,但会带来噪音等问题,影响分类精度。为解决此问题,借助主动学习支持向量机的分类性能,提出一种基于主动学习SMOTE的非均衡数据分类方法 ALSMOTE。由于主动学习支持向量机采用基于距离的主动选择最佳样本的学习策略,因此能够主动选择非均衡数据中的有价值的多数类样本,舍弃价值较小的样本,从而提高运算效率,改进SMOTE带来的问题。首先运用SMOTE方法均衡小部分样本,得到初始分类器;然后利用主动学习策略调整分类器精度。实验结果表明,该方法有效提高了非均衡数据的分类准确率。 展开更多
关键词 主动学习 不平衡数据集 少数样本合成过采样技术 支持向量机
在线阅读 下载PDF
非平衡技术在高速网络入侵检测中的应用 被引量:3
19
作者 赵月爱 陈俊杰 穆晓芳 《计算机应用》 CSCD 北大核心 2009年第7期1806-1808,1812,共4页
针对现有的高速网络入侵检测系统丢包率高、检测速度慢以及检测算法对不同类型攻击检测的非平衡性等问题,提出了采用两阶段的负载均衡策略的检测模型。在线检测阶段对网络数据包按协议类型进行分流的检测,离线建模阶段对不同协议类型的... 针对现有的高速网络入侵检测系统丢包率高、检测速度慢以及检测算法对不同类型攻击检测的非平衡性等问题,提出了采用两阶段的负载均衡策略的检测模型。在线检测阶段对网络数据包按协议类型进行分流的检测,离线建模阶段对不同协议类型的数据进行学习建模,供在线部分检测。在讨论非平衡数据处理的各种采样技术基础上,采用改进后的过抽样少数样本合成过采样技术(SMOTE)对网络数据进行预处理,采用AdaBoost、随机森林算法等进行分类。另外对特征选取等方面进行了实验,结果表明SMOTE过抽样可提高各少数类的检测,随机森林算法分类效果好而且建模所用的时间稳定。 展开更多
关键词 高速网络 入侵检测 非平衡数据 少数样本合成过采样技术 集成学习 ADABOOST算法 随机森林算法
在线阅读 下载PDF
基于不平衡数据集的主动学习分类算法 被引量:8
20
作者 赵小强 刘梦依 《控制工程》 CSCD 北大核心 2019年第2期314-319,共6页
针对不平衡数据集在分类过程中易产生噪声数据和分类精度低的问题,提出一种基于改进SMOTE的不平衡数据集主动学习SVM分类算法。该算法对训练样本集利用少数类样本的归属值通过多数票选择法控制合成少数类样本的数量,以距离公式为衡量标... 针对不平衡数据集在分类过程中易产生噪声数据和分类精度低的问题,提出一种基于改进SMOTE的不平衡数据集主动学习SVM分类算法。该算法对训练样本集利用少数类样本的归属值通过多数票选择法控制合成少数类样本的数量,以距离公式为衡量标准划分超平面,在分类超平面两侧选择最近距离的等量对称的多数类样本,组成平衡采样数据集,利用支持向量机(SVM)进行分类得到优化分类器,再用主动学习对去除了训练样本的不平衡数据集利用优化分类器进行分类循环,直到剩余样本为零。利用UCI数据集中的数据实验表明,该算法有效地减少了噪声数据对分类的影响,并有效改善不平衡数据集的分类精度。 展开更多
关键词 数据挖掘 不平衡数据集 分类 少数样本合成过采样技术
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部