A function projective synchronization of two identical hyperchaotic systems is defined and the theorem of sufficient condition is given. Based on the active control method and symbolic computation Maple, the scheme of...A function projective synchronization of two identical hyperchaotic systems is defined and the theorem of sufficient condition is given. Based on the active control method and symbolic computation Maple, the scheme of function projective synchronization is developed to synchronize the two identical new hyperchaotic systems constructed by Yan up to a scaling function matrix with different initial values. Numerical simulations are used to verify the effectiveness of the scheme.展开更多
This paper investigates the synchronization and circuit implementation of a new hyperchaotic Lorenz system. This system is generated by controlling a generalized Lorenz system to hyperchaotic by introducing a linear s...This paper investigates the synchronization and circuit implementation of a new hyperchaotic Lorenz system. This system is generated by controlling a generalized Lorenz system to hyperchaotic by introducing a linear state feedback controller to its scored equation. Global synchronization of the new hyperchaotic systems can be achieved by unidirectonally linear coupled approach, which is illustrated by both numerical simulations and electronic circuit experiments.展开更多
This paper proposes the chaos control and the modified projective synchronization methods for chaotic dissipative gyroscope systems. Because of the nonlinear terms of the gyroscope system, the system exhibits chaotic ...This paper proposes the chaos control and the modified projective synchronization methods for chaotic dissipative gyroscope systems. Because of the nonlinear terms of the gyroscope system, the system exhibits chaotic motions. Occasionally, the extreme sensitivity to initial states in a system operating in chaotic mode can be very destructive to the system because of unpredictable behavior. In order to improve the performance of a dynamic system or avoid the chaotic phenomena, it is necessary to control a chaotic system with a periodic motion beneficial for working with a particular condition. As chaotic signals are usually broadband and noise like, synchronized chaotic systems can be used as cipher generators for secure communication. This paper presents chaos synchronization of two identical chaotic motions of symmetric gyroscopes. Using the variable structure control technique, control laws are established which guarantees the chaos control and the modified projective synchronization. By Lyapunov stability theory, control lows are proposed to ensure the stability of the controlled and synchronized system. Numerical simulations are presented to verify the proposed control and the synchronization approach. This paper demonstrates that synchronization and anti-synchronization can coexist in dissipative gyroscope systems via variable structure control.展开更多
基金*The project supported by the Natural Science Foundations of Zhejiang Province under Grant No. Y604056 and the Doctoral Foundation of Ningbo City under Grant No. 2005A61030
文摘A function projective synchronization of two identical hyperchaotic systems is defined and the theorem of sufficient condition is given. Based on the active control method and symbolic computation Maple, the scheme of function projective synchronization is developed to synchronize the two identical new hyperchaotic systems constructed by Yan up to a scaling function matrix with different initial values. Numerical simulations are used to verify the effectiveness of the scheme.
基金upported by National Natural Science Foundation of China(Grant No.60672085)“Taishan Scholarship”Construction Engineering
文摘This paper investigates the synchronization and circuit implementation of a new hyperchaotic Lorenz system. This system is generated by controlling a generalized Lorenz system to hyperchaotic by introducing a linear state feedback controller to its scored equation. Global synchronization of the new hyperchaotic systems can be achieved by unidirectonally linear coupled approach, which is illustrated by both numerical simulations and electronic circuit experiments.
文摘This paper proposes the chaos control and the modified projective synchronization methods for chaotic dissipative gyroscope systems. Because of the nonlinear terms of the gyroscope system, the system exhibits chaotic motions. Occasionally, the extreme sensitivity to initial states in a system operating in chaotic mode can be very destructive to the system because of unpredictable behavior. In order to improve the performance of a dynamic system or avoid the chaotic phenomena, it is necessary to control a chaotic system with a periodic motion beneficial for working with a particular condition. As chaotic signals are usually broadband and noise like, synchronized chaotic systems can be used as cipher generators for secure communication. This paper presents chaos synchronization of two identical chaotic motions of symmetric gyroscopes. Using the variable structure control technique, control laws are established which guarantees the chaos control and the modified projective synchronization. By Lyapunov stability theory, control lows are proposed to ensure the stability of the controlled and synchronized system. Numerical simulations are presented to verify the proposed control and the synchronization approach. This paper demonstrates that synchronization and anti-synchronization can coexist in dissipative gyroscope systems via variable structure control.