生成对抗网络常常被用于图像着色、语义合成、风格迁移等图像转换任务,但现阶段图像生成模型的训练往往依赖于大量配对的数据集,且只能实现两个图像域之间的转换。针对以上问题,提出了一种基于生成对抗网络的时尚内容和风格迁移模型(con...生成对抗网络常常被用于图像着色、语义合成、风格迁移等图像转换任务,但现阶段图像生成模型的训练往往依赖于大量配对的数据集,且只能实现两个图像域之间的转换。针对以上问题,提出了一种基于生成对抗网络的时尚内容和风格迁移模型(content and style transfer based on generative adversarial network,CS-GAN)。该模型利用对比学习框架最大化时尚单品与生成图像之间的互信息,可保证在时尚单品结构不变的前提下实现内容迁移;通过层一致性动态卷积方法,针对不同风格图像自适应地学习风格特征,实现时尚单品任意风格迁移,对输入的时尚单品进行内容特征(如颜色、纹理)和风格特征(如莫奈风、立体派)的融合,实现多个图像域的转换。在公开的时尚数据集上进行对比实验和结果分析,该方法与其他主流方法相比,在图像合成质量、Inception score和FID距离评价指标上均有所提升。展开更多
心脏磁共振成像(cardiac magnetic resonance,CMR)过程中患者误动、异常幅度的呼吸运动、心律失常会造成CMR图像质量下降,为解决现有的CMR图像增强网络需要人为制作配对数据,且图像增强后部分组织纹理细节丢失的问题,提出了基于空频域...心脏磁共振成像(cardiac magnetic resonance,CMR)过程中患者误动、异常幅度的呼吸运动、心律失常会造成CMR图像质量下降,为解决现有的CMR图像增强网络需要人为制作配对数据,且图像增强后部分组织纹理细节丢失的问题,提出了基于空频域特征学习的循环一致性生成对抗网络(cycle-consistent generative adversavial network based on spatial-frequency domain feature learning,SFFL-CycleGAN).研究结果表明,该网络无须人为制作配对数据集,增强后的CMR图像组织纹理细节丰富,在结构相似度(structural similarity,SSIM)和峰值信噪比(peak signal to noise ratio,PSNR)等方面均优于现有的配对训练网络以及原始的CycleGAN网络,图像增强效果好,有效助力病情诊断.展开更多
文摘生成对抗网络常常被用于图像着色、语义合成、风格迁移等图像转换任务,但现阶段图像生成模型的训练往往依赖于大量配对的数据集,且只能实现两个图像域之间的转换。针对以上问题,提出了一种基于生成对抗网络的时尚内容和风格迁移模型(content and style transfer based on generative adversarial network,CS-GAN)。该模型利用对比学习框架最大化时尚单品与生成图像之间的互信息,可保证在时尚单品结构不变的前提下实现内容迁移;通过层一致性动态卷积方法,针对不同风格图像自适应地学习风格特征,实现时尚单品任意风格迁移,对输入的时尚单品进行内容特征(如颜色、纹理)和风格特征(如莫奈风、立体派)的融合,实现多个图像域的转换。在公开的时尚数据集上进行对比实验和结果分析,该方法与其他主流方法相比,在图像合成质量、Inception score和FID距离评价指标上均有所提升。
文摘心脏磁共振成像(cardiac magnetic resonance,CMR)过程中患者误动、异常幅度的呼吸运动、心律失常会造成CMR图像质量下降,为解决现有的CMR图像增强网络需要人为制作配对数据,且图像增强后部分组织纹理细节丢失的问题,提出了基于空频域特征学习的循环一致性生成对抗网络(cycle-consistent generative adversavial network based on spatial-frequency domain feature learning,SFFL-CycleGAN).研究结果表明,该网络无须人为制作配对数据集,增强后的CMR图像组织纹理细节丰富,在结构相似度(structural similarity,SSIM)和峰值信噪比(peak signal to noise ratio,PSNR)等方面均优于现有的配对训练网络以及原始的CycleGAN网络,图像增强效果好,有效助力病情诊断.