期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
基于固有模态分解和深度学习的抑郁症脑电信号分类分析 被引量:6
1
作者 刘岩 李幼军 陈萌 《中国医学物理学杂志》 CSCD 2017年第9期963-967,共5页
以采集到的抑郁症患者和正常人的脑电信号为基础,采用固有模态分解算法对原始信号去噪处理,通过卷积神经网络对抑郁症患者和正常人进行分类分析。首先通过脑电信号的采集实验,采集15位抑郁症患者和15位正常人对照组Fp1的静息态脑电信号... 以采集到的抑郁症患者和正常人的脑电信号为基础,采用固有模态分解算法对原始信号去噪处理,通过卷积神经网络对抑郁症患者和正常人进行分类分析。首先通过脑电信号的采集实验,采集15位抑郁症患者和15位正常人对照组Fp1的静息态脑电信号;之后对采集到的静息态脑电进行去噪处理,脑电去噪处理主要包括固有模态分解算法对原始信号的分解获得不同层次的IMF分量,对IMF分量进行频域分析,通过硬阈值的方法剔除原始信号中的噪声信号;最后采用卷积神经网络对抑郁症患者和正常人对照组进行二值分类,结果相较于传统的特征提取-机器学习算法,分类准确率明显提高。 展开更多
关键词 抑郁症 脑电信号 固有模态分解 固有模态函数 卷积神经网络
在线阅读 下载PDF
经验模态分解方法在混凝土模型检测中的应用 被引量:1
2
作者 李广瑞 朱自强 +1 位作者 鲁光银 密士文 《物探与化探》 CAS CSCD 2013年第5期951-955,共5页
经验模态分解在处理非线性,多分量信号方面有其独特的优势,但是受信号采样率以及频程大小的影响,传统经验模态分解之后,各固有模态分解函数并非由单一频率成分组成。采用屏蔽信号和采样率内插相结合的方法来改进传统固有模态分解,得到... 经验模态分解在处理非线性,多分量信号方面有其独特的优势,但是受信号采样率以及频程大小的影响,传统经验模态分解之后,各固有模态分解函数并非由单一频率成分组成。采用屏蔽信号和采样率内插相结合的方法来改进传统固有模态分解,得到的固有模态函数较传统EMD分解有很大改善。以改善分解后的固有模态函数为基础,利用合成孔径聚焦成像,成像结果可以很清楚的发现目标体的位置所在,证明了此种改进方法的可行性。 展开更多
关键词 固有模态分解 屏蔽信号 采样率内插 合成孔径聚焦成像 无损检测
在线阅读 下载PDF
The filtering characteristics of HHT and its application in acoustic log waveform signal processing 被引量:6
3
作者 王祝文 刘菁华 +2 位作者 岳崇旺 李晓春 李长春 《Applied Geophysics》 SCIE CSCD 2009年第1期8-16,102,共10页
Array acoustic logging plays an important role in formation evaluation. Its data is a non-linear and non-stationary signal and array acoustic logging signals have time-varying spectrum characteristics. Traditional fil... Array acoustic logging plays an important role in formation evaluation. Its data is a non-linear and non-stationary signal and array acoustic logging signals have time-varying spectrum characteristics. Traditional filtering methods are inadequate. We introduce a Hilbert- Huang transform (HHT) which makes full preservation of the non-linear and non-stationary characteristics and has great advantages in the acoustic signal filtering. Using the empirical mode decomposition (EMD) method, the acoustic log waveforms can be decomposed into a finite and often small number of intrinsic mode functions (IMF). The results of applying HHT to real array acoustic logging signal filtering and de-noising are presented to illustrate the efficiency and power of this new method. 展开更多
关键词 Hilbert-Huang transform empirical mode decomposition intrinsic mode functions time-frequency filter
在线阅读 下载PDF
Random noise attenuation by f–x spatial projection-based complex empirical mode decomposition predictive filtering 被引量:7
4
作者 马彦彦 李国发 +2 位作者 王钧 周辉 张保江 《Applied Geophysics》 SCIE CSCD 2015年第1期47-54,121,共9页
The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in ... The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in signal damage and limited denoising. Second, decomposing the real and imaginary parts of complex data may lead to inconsistent decomposition numbers. Thus, we propose a new method named f–x spatial projection-based complex empirical mode decomposition(CEMD) prediction filtering. The proposed approach directly decomposes complex seismic data into a series of complex IMFs(CIMFs) using the spatial projection-based CEMD algorithm and then applies f–x predictive filtering to the stationary CIMFs to improve the signal-to-noise ratio. Synthetic and real data examples were used to demonstrate the performance of the new method in random noise attenuation and seismic signal preservation. 展开更多
关键词 Complex empirical mode decomposition complex intrinsic mode functions f–x predictive filtering random noise attenuation
在线阅读 下载PDF
Reservoir detection based on EMD and correlation dimension 被引量:3
5
作者 文晓涛 贺振华 黄德济 《Applied Geophysics》 SCIE CSCD 2009年第1期70-76,103,104,共9页
In hydrocarbon reservoirs, seismic waveforms become complex and the correlation dimension becomes smaller. Seismic waves are signals with a definite frequency bandwidth and the waveform is affected by all the frequenc... In hydrocarbon reservoirs, seismic waveforms become complex and the correlation dimension becomes smaller. Seismic waves are signals with a definite frequency bandwidth and the waveform is affected by all the frequency components in the band. The results will not define the reservoir well if we calculate correlation dimension directly. In this paper, we present a method that integrates empirical mode decomposition (EMD) and correlation dimension. EMD is used to decompose the seismic waves and calculate the correlation dimension of every intrinsic mode function (IMF) component of the decomposed wave. Comparing the results with reservoirs identified by known wells, the most effective IMF is chosen and used to predict the reservoir. The method is applied in the Triassic Zhongyou group in the XX area of the Tahe oil field with quite good results. 展开更多
关键词 empirical mode decomposition correlation dimension intrinsic mode function RESERVOIR
在线阅读 下载PDF
气-液两相流图像灰度脉动信号的多尺度双分形特性研究
6
作者 李洪伟 周云龙 《核动力工程》 EI CAS CSCD 北大核心 2011年第5期100-104,共5页
应用高速摄影技术拍取气-液两相流水平管中3种典型流型的动态图像视频,对每一帧图像的平均灰度脉动信号进行提取;将提取的信号进行多尺度固有模态函数分解,然后与极差/标准偏差(R/S)分析方法相结合,提取各尺度的HURST指数和双分形特征... 应用高速摄影技术拍取气-液两相流水平管中3种典型流型的动态图像视频,对每一帧图像的平均灰度脉动信号进行提取;将提取的信号进行多尺度固有模态函数分解,然后与极差/标准偏差(R/S)分析方法相结合,提取各尺度的HURST指数和双分形特征。对气-液两相流的3种典型流型进行了气泡群和单个气泡2种形式的动力学行为分析,应用峭度系数提取对分析结果进行验证,并论述了HURST指数值随气相表观速度的变化情况。结果表明:固有模态函数分解(EMD)结合R/S分析能够很好地揭示气-液两相流的非线性动力学特征。 展开更多
关键词 气-液两相流 图像灰度 固有模态函数分解 HURST指数 峭度 功率谱
在线阅读 下载PDF
Dynamic unbalance detection of cardan shaft in high-speed train based on EMD-SVD-NHT 被引量:3
7
作者 丁建明 林建辉 +1 位作者 何刘 赵洁 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2149-2157,共9页
Contrary to the aliasing defect between the adjacent intrinsic model functions(IMFs) existing in empirical model decomposition(EMD), a new method of detecting dynamic unbalance with cardan shaft in high-speed train wa... Contrary to the aliasing defect between the adjacent intrinsic model functions(IMFs) existing in empirical model decomposition(EMD), a new method of detecting dynamic unbalance with cardan shaft in high-speed train was proposed by applying the combination between EMD, Hankel matrix, singular value decomposition(SVD) and normalized Hilbert transform(NHT). The vibration signals of gimbal installed base were decomposed through EMD to get different IMFs. The Hankel matrix constructed through the single IMF was orthogonally executed through SVD. The critical singular values were selected to reconstruct vibration signs on the basis of the key stack of singular values. Instantaneous frequencys(IFs) of reconstructed vibration signs were applied to detect dynamic unbalance with shaft and eliminated clutter spectrum caused by the aliasing defect between the adjacent IMFs, which highlighted the failure characteristics. The method was verified by test data in the unbalance condition of dynamic cardan shaft. The results show that the method effectively detects the fault vibration characteristics caused by cardan shaft dynamic unbalance and extracts the nature vibration features. With comparison to the traditional EMD-NHT, clarity and failure characterization force are significantly improved. 展开更多
关键词 cardan shaft empirical model decomposition (EMD) singular value decomposition (SVD) normalized Hilbert transform (NHT) dynamic unbalance detection
在线阅读 下载PDF
Noise-assisted MEMD based relevant IMFs identification and EEG classification 被引量:6
8
作者 SHE Qing-shan MA Yu-liang +2 位作者 MENG Ming XI Xu-gang LUO Zhi-zeng 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期599-608,共10页
Noise-assisted multivariate empirical mode decomposition(NA-MEMD) is suitable to analyze multichannel electroencephalography(EEG) signals of non-stationarity and non-linearity natures due to the fact that it can provi... Noise-assisted multivariate empirical mode decomposition(NA-MEMD) is suitable to analyze multichannel electroencephalography(EEG) signals of non-stationarity and non-linearity natures due to the fact that it can provide a highly localized time-frequency representation.For a finite set of multivariate intrinsic mode functions(IMFs) decomposed by NA-MEMD,it still raises the question on how to identify IMFs that contain the information of inertest in an efficient way,and conventional approaches address it by use of prior knowledge.In this work,a novel identification method of relevant IMFs without prior information was proposed based on NA-MEMD and Jensen-Shannon distance(JSD) measure.A criterion of effective factor based on JSD was applied to select significant IMF scales.At each decomposition scale,three kinds of JSDs associated with the effective factor were evaluated:between IMF components from data and themselves,between IMF components from noise and themselves,and between IMF components from data and noise.The efficacy of the proposed method has been demonstrated by both computer simulations and motor imagery EEG data from BCI competition IV datasets. 展开更多
关键词 multichannel electroencephalography noise-assisted multivariate empirical mode decomposition Jensen-Shannondistance brain-computer interface
在线阅读 下载PDF
Single Trial Detection of Visual Evoked Potential by Using EMD and Wavelet Filtering Method
9
作者 HE Ke-ren ZOU Ling +2 位作者 TAO Cai-lin MA Zheng-hua ZHOU Tian-tong 《Chinese Journal of Biomedical Engineering(English Edition)》 2011年第3期115-118,124,共5页
Empirical mode decomposition(EMD) is a new signal decomposition method, which could decompose the non-stationary signal into several single-component intrinsic mode functions (IMFs) and each IMF has some physical mean... Empirical mode decomposition(EMD) is a new signal decomposition method, which could decompose the non-stationary signal into several single-component intrinsic mode functions (IMFs) and each IMF has some physical meanings. This paper studies the single trial extraction of visual evoked potential by combining EMD and wavelet threshold filter. Experimental results showed that the EMD based method can separate the noise out of the event related potentials (ERPs) and effectively extract the weak ERPs in strong background noise, which manifested as the waveform characteristics and root mean square error (RMSE). 展开更多
关键词 EMD wavelet threshold ERP single trial extraction
在线阅读 下载PDF
基于EMD和SVM的抑郁症静息态脑电信号分类研究 被引量:7
10
作者 刘岩 李幼军 陈萌 《山东大学学报(工学版)》 CAS 北大核心 2017年第3期21-26,共6页
以静息态脑电信号为基础,通过固有模态分解(empirical mode decomposition,EMD)算法对脑电信号进行信号去噪和特征值提取,通过支持向量机(support vector machine,SVM)算法对抑郁症患者和正常对照组人群的脑电特征值进行分类分析。通过... 以静息态脑电信号为基础,通过固有模态分解(empirical mode decomposition,EMD)算法对脑电信号进行信号去噪和特征值提取,通过支持向量机(support vector machine,SVM)算法对抑郁症患者和正常对照组人群的脑电特征值进行分类分析。通过系统化的数据采集试验,采集了20位抑郁症患者和25位健康对照组的静息态脑电信号;对静息态脑电信号进行信号的去噪和特征提取;采用SVM算法对抑郁症患者和正常人对照组脑电特征值进行二值分类,分类正确率达到93.3%。相较于传统的小波变换提取的特征值,分类准确率有明显的提高。 展开更多
关键词 抑郁症 脑电信号 固有模态分解 固有模态函数 支持向量机
原文传递
On-line chatter detection using servo motor current signal in turning 被引量:18
11
作者 LIU HongQil CHEN QmgHa +3 位作者 LI Bin MAO XinYong MAO KuanMin PENG FangYu 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第12期3119-3129,共11页
Chatter often poses limiting factors on the achievable productivity and is very harmful to machining processes. In order to avoid effectively the harm of cutting chatter,a method of cutting state monitoring based on f... Chatter often poses limiting factors on the achievable productivity and is very harmful to machining processes. In order to avoid effectively the harm of cutting chatter,a method of cutting state monitoring based on feed motor current signal is proposed for chatter identification before it has been fully developed. A new data analysis technique,the empirical mode decomposition(EMD),is used to decompose motor current signal into many intrinsic mode functions(IMF) . Some IMF's energy and kurtosis regularly change during the development of the chatter. These IMFs can reflect subtle mutations in current signal. Therefore,the energy index and kurtosis index are used for chatter detection based on those IMFs. Acceleration signal of tool as reference is used to compare with the results from current signal. A support vector machine(SVM) is designed for pattern classification based on the feature vector constituted by energy index and kurtosis index. The intelligent chatter detection system composed of the feature extraction and the SVM has an accuracy rate of above 95% for the identification of cutting state after being trained by experimental data. The results show that it is feasible to monitor and predict the emergence of chatter behavior in machining by using motor current signal. 展开更多
关键词 chatter detection current signal empirical mode decomposition (EMD) support vector machine (SVM)
原文传递
Detection of Chondromalacia Patellae by Analysis of Intrinsic Mode Functions in Knee-Joint Vibration Signals 被引量:1
12
作者 WU Yun-feng CAI Su-xian +2 位作者 XU Fang SHI Lei Sridhar Krishnan 《Chinese Journal of Biomedical Engineering(English Edition)》 2014年第2期80-86,共7页
This paper presents the knee-joint vibration signal processing and pathological localization procedures using the empirical mode decomposition for patients with chondrom alacia patellae.The artifacts of baseline wande... This paper presents the knee-joint vibration signal processing and pathological localization procedures using the empirical mode decomposition for patients with chondrom alacia patellae.The artifacts of baseline wander and random noise were identified in the decomposed monotonic trend and intrinsic mode functions (IMF) using the modeling method of probability density function and the confidence limit criterion.Then, the fluctuation parts in the signal were detected by the signal method turning for count. The results demonstrated that the quality of reconstructed signal can be greatly improved, with the removal of the baseline wander(adaptive trend) and the Gaussian distributed random noise. By detecting the turn signals in the artifact-free signal, the pathological segments related to chondrom alacia patellae can be effectively localized with the beginning and ending points of the span of turn signals. 展开更多
关键词 knee-joint disorders vibration arthrometry empirical mode decomposition chondromalacia patellae
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部