Heavy metal contents in the soils in the Baoshan District of Shanghai were monitored to evaluate the risk of soil environmental quality degradation due to rapid urbanization and to reveal the ways of heavy metal accum...Heavy metal contents in the soils in the Baoshan District of Shanghai were monitored to evaluate the risk of soil environmental quality degradation due to rapid urbanization and to reveal the ways of heavy metal accumulation in soil during rapid urban sprawl. It was found that the soils in this district were commonly contaminated by Pb, Zn and Cd. Evaluated with a geo-accumulation index (Igeo), the rate of Pb contamination in soils was 100% with 59% of these graded as moderate-severe or severe; Zn contamination reached 59% with 6% graded as moderate-severe or severe; and Cd contamination was over 50%, with one site graded as moderate-severe and another severe-extremely severe. Metal contamination of soils around the Shanghai metropolis was mainly attributed to traffic, industrial production, wastewater irrigation and improper disposal of solid wastes. Because of continuing urbanization, the cultivated land around the metropolis should be comprehensively planned and carefully managed. Also the soil environmental quality of vegetable production bases in this area should be monitored regularly, with vegetables to be grown selected according to the degrees and types of soil contamination.展开更多
Based on the Industrial Source Complex Short-Term Version 3 (ISCST3) model, a simplified modeling approach was developed to predict concentrations of congeners of polychlorinated-p-dioxins and dibenzofurans (PCDD/F...Based on the Industrial Source Complex Short-Term Version 3 (ISCST3) model, a simplified modeling approach was developed to predict concentrations of congeners of polychlorinated-p-dioxins and dibenzofurans (PCDD/Fs) of agricultural soil, within a radius of 3 kin from a municipal solid waste incinerator (MSWI) plant after its 4-year operation in Hangzhou, China. Comparisons were made between the measured and estimated congener-specific concentrations and the international-toxic equivalent (I-TEQ) values of soil samples with respect to distance from the stack. The results indicate that the predictions of soil PCDD/F concentrations and K-TEQ values were generally lower than their observations, and that the higher the degree of underestimation seems, the greater the further downwind one gets. Nevertheless, most of the predictions were in good agreement with the trend of measured ones and were within a factor of ten for samples located within 1 kin of the plant. Besides, analysis of contributions of various deposition pathways confirms that in addition to wet particle deposition, the dry gaseous deposition is essential for realistic prediction of PCDD/F depositions to soil, especially for tetra- and penta-chlorinated dioxins.展开更多
Environmental pollution caused by metals, radionuclides and organic pollutants affects quality of the biosphere: soil, water and air.Currently, great efforts have been made to reduce, remove or stabilize contaminants ...Environmental pollution caused by metals, radionuclides and organic pollutants affects quality of the biosphere: soil, water and air.Currently, great efforts have been made to reduce, remove or stabilize contaminants in polluted sites. There has been increasing interest in phytoremediation—the use of plants to reduce concentration of pollutants or to render them harmless. This paper provides a brief review of recent progress in the research and practical application of phytoremediation techniques. Improvements in phytoremediation due to utilization of organic amendments, namely, agro- and industrial wastes(such as sugar beet residue, composted sewage sludge or molasses), biochar, humic substances, plant extracts and exudates are discussed, as well as their influences on soil structure and characteristics, plants growth and bioavailability of pollutants. Both plant-assisted phytoremediation and the use of natural materials in the absence of remediating plant are believed to be cost-effective and environmentally friendly approaches for soil cleanup. However,the characterization and quantification of a range of natural materials used in phytoremediation are essential in order to implement these approaches to practice.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 40235054, 40131020 and 40101013) and the Science Foundation of Shanghai Higher Schools for Young Teachers.
文摘Heavy metal contents in the soils in the Baoshan District of Shanghai were monitored to evaluate the risk of soil environmental quality degradation due to rapid urbanization and to reveal the ways of heavy metal accumulation in soil during rapid urban sprawl. It was found that the soils in this district were commonly contaminated by Pb, Zn and Cd. Evaluated with a geo-accumulation index (Igeo), the rate of Pb contamination in soils was 100% with 59% of these graded as moderate-severe or severe; Zn contamination reached 59% with 6% graded as moderate-severe or severe; and Cd contamination was over 50%, with one site graded as moderate-severe and another severe-extremely severe. Metal contamination of soils around the Shanghai metropolis was mainly attributed to traffic, industrial production, wastewater irrigation and improper disposal of solid wastes. Because of continuing urbanization, the cultivated land around the metropolis should be comprehensively planned and carefully managed. Also the soil environmental quality of vegetable production bases in this area should be monitored regularly, with vegetables to be grown selected according to the degrees and types of soil contamination.
基金Project (Nos. X506312 and X206955) supported by the NaturalScience Foundation of Zhejiang Province, China
文摘Based on the Industrial Source Complex Short-Term Version 3 (ISCST3) model, a simplified modeling approach was developed to predict concentrations of congeners of polychlorinated-p-dioxins and dibenzofurans (PCDD/Fs) of agricultural soil, within a radius of 3 kin from a municipal solid waste incinerator (MSWI) plant after its 4-year operation in Hangzhou, China. Comparisons were made between the measured and estimated congener-specific concentrations and the international-toxic equivalent (I-TEQ) values of soil samples with respect to distance from the stack. The results indicate that the predictions of soil PCDD/F concentrations and K-TEQ values were generally lower than their observations, and that the higher the degree of underestimation seems, the greater the further downwind one gets. Nevertheless, most of the predictions were in good agreement with the trend of measured ones and were within a factor of ten for samples located within 1 kin of the plant. Besides, analysis of contributions of various deposition pathways confirms that in addition to wet particle deposition, the dry gaseous deposition is essential for realistic prediction of PCDD/F depositions to soil, especially for tetra- and penta-chlorinated dioxins.
基金financially supported by the Polish Ministry of Science and Higher Education(No.DS 3500)
文摘Environmental pollution caused by metals, radionuclides and organic pollutants affects quality of the biosphere: soil, water and air.Currently, great efforts have been made to reduce, remove or stabilize contaminants in polluted sites. There has been increasing interest in phytoremediation—the use of plants to reduce concentration of pollutants or to render them harmless. This paper provides a brief review of recent progress in the research and practical application of phytoremediation techniques. Improvements in phytoremediation due to utilization of organic amendments, namely, agro- and industrial wastes(such as sugar beet residue, composted sewage sludge or molasses), biochar, humic substances, plant extracts and exudates are discussed, as well as their influences on soil structure and characteristics, plants growth and bioavailability of pollutants. Both plant-assisted phytoremediation and the use of natural materials in the absence of remediating plant are believed to be cost-effective and environmentally friendly approaches for soil cleanup. However,the characterization and quantification of a range of natural materials used in phytoremediation are essential in order to implement these approaches to practice.