期刊文献+
共找到1,066篇文章
< 1 2 54 >
每页显示 20 50 100
基于Elman神经网络的茶叶主产省农业产值与茶商品价格模拟
1
作者 程陈 罗屹 +3 位作者 郑生宏 王嘉仪 张含雨 丁枫华 《中国农机化学报》 北大核心 2025年第2期264-270,共7页
精准预测农业产值和农产品价格对高效利用发展农业资源、调整农业结构和加强农业信息化建设等起推动作用。基于茶叶主产省农业产值及关键影响因素数据和3种电商平台的茶商品交易数据,利用经典的逐步回归方法确定农业产值和茶商品价格的... 精准预测农业产值和农产品价格对高效利用发展农业资源、调整农业结构和加强农业信息化建设等起推动作用。基于茶叶主产省农业产值及关键影响因素数据和3种电商平台的茶商品交易数据,利用经典的逐步回归方法确定农业产值和茶商品价格的关键影响因素及权重,构建基于Elman神经网络算法的农业产值和茶商品价格模拟模型。结果表明,茶叶主产省农业产值的关键影响因素包括活动积温、降水量、粮食作物播种面积、经济作物播种面积、经济作物产量占比、农业机械总动力、机耕面积、机播面积、机收面积、农村用电量、化肥施用量(折纯量)、乡村人口数和乡村从业人员数;茶叶主产省茶商品价格的关键影响因素包括平台、省份、茶类、采摘季节、商品级别和增值服务。基于Elman神经网络算法的茶叶主产省农业产值模型模拟值与实测值的均方根误差为6.21~27.51亿元,归一化均方根误差为3.10%~12.23%;基于Elman神经网络算法的3种电商平台茶商品价格模型模拟值与实测值的均方根误差为81.94~98.26元/kg,归一化均方根误差为8.42%~35.66%。 展开更多
关键词 茶叶 elman神经网络 逐步回归 农业产值 茶商品价格 模拟模型
在线阅读 下载PDF
基于WOA-Elman神经网络的城市固废焚烧炉主蒸汽流量软测量
2
作者 梁伟平 薛文雅 +2 位作者 马靖宁 陈联宏 许洪滨 《控制工程》 北大核心 2025年第2期201-207,共7页
主蒸汽流量对于垃圾焚烧炉平稳运行起着重要的作用。目前,主蒸汽流量机理计算模型复杂,且准确度不高。针对这一问题,应用一种基于鲸鱼优化算法(Whale optimization algorithm,WOA)和Elman神经网络的焚烧炉主蒸汽流量软测量模型。首先,... 主蒸汽流量对于垃圾焚烧炉平稳运行起着重要的作用。目前,主蒸汽流量机理计算模型复杂,且准确度不高。针对这一问题,应用一种基于鲸鱼优化算法(Whale optimization algorithm,WOA)和Elman神经网络的焚烧炉主蒸汽流量软测量模型。首先,根据相关性分析筛选相关变量;再通过WOA优化Elman神经网络参数;最后,建立WOA-Elman神经网络主蒸汽流量软测量模型。结果表明,与其他经典软测量模型相比,建立的WOA-Elman神经网络软测量模型准确度更高,误差更小,能够有效地应用于主蒸汽流量软测量中。 展开更多
关键词 垃圾焚烧炉 主蒸汽流量 软测量 elman神经网络 鲸鱼优化算法
在线阅读 下载PDF
基于Elman神经网络的旱情预测模型研究
3
作者 杨靖峰 边东波 +1 位作者 王宝龙 杨溢 《天津农林科技》 2025年第1期12-18,共7页
文章以2018年9月1日至2021年8月31日天津市蓟州区、静海区、宁河区、滨海新区的10个气象自动监测站的3年数据为基础,研究建立基于Elman神经网络的旱情预测模型,并对模型应用进行测试评价。文章数据选取空气温度、空气湿度、风速、风向... 文章以2018年9月1日至2021年8月31日天津市蓟州区、静海区、宁河区、滨海新区的10个气象自动监测站的3年数据为基础,研究建立基于Elman神经网络的旱情预测模型,并对模型应用进行测试评价。文章数据选取空气温度、空气湿度、风速、风向等18项影响因子训练Elman神经网络模型,对旱情进行短期(24 h)、中期(7 d)、长期(14 d)预测。结果显示,基于Elman神经网络的旱情预测模型短、中、长期3个时期的平均旱情预测准确度分别达到97.82%、91.71%、88.94%,与2023年建立的墒情预测模型结果(短期、中期、长期预测准确度分别为96.64%、90.60%、85.59%)[1]进行对比,短、中、长期3个时期旱情预测模型的平均预测准确度均高于同期墒情预测模型的准确度,其中旱情预测模型Ⅲ(14 d)对20 cm土层深度的旱情预测准确度比同期同层次墒情预测模型的准确度提高9.3%。研究发现,天津地区的气候特点与我国北方大部分地区相似,降雨主要集中于一年内的某些月份,从而使得旱情预测模型的预测准确度高于墒情预测模型的预测准确度,故本研究的旱情预测模型可以推广至我国北方大部分地区及中西部地区,以期为当地旱情、墒情预测预报研究提供参考。 展开更多
关键词 旱情 elman神经网络 短期预测 中长期预测
在线阅读 下载PDF
基于IWOA-SA-Elman神经网络的短期风电功率预测 被引量:4
4
作者 刘吉成 朱玺瑞 于晶 《太阳能学报》 EI CAS CSCD 北大核心 2024年第1期143-150,共8页
由于风力发电的随机性和不确定性使其短期功率的预测工作十分困难,而神经网络模型依靠其强大的自学习能力在风电功率预测领域有着广泛的应用。但神经网络预测精度受初始权重影响较大,且易出现过拟合的问题。为此构建一种基于改进鲸鱼算... 由于风力发电的随机性和不确定性使其短期功率的预测工作十分困难,而神经网络模型依靠其强大的自学习能力在风电功率预测领域有着广泛的应用。但神经网络预测精度受初始权重影响较大,且易出现过拟合的问题。为此构建一种基于改进鲸鱼算法和模拟退火组合优化的Elman神经网络短期风电功率预测模型,模型首先利用改进鲸鱼算法结合模拟退火策略获得高质量神经网络初始权值,接着引入正则化损失函数防止其过拟合,最后以西班牙瓦伦西亚某风电场陆上短期风电功率为研究对象,将该算法与BP、LSTM、Elman、WOA-Elman、IWOA-Elman 5种神经网络算法进行算法性能测试对比,结果表明IWOA-SA-Elman神经网络模型预测误差最小,验证了该算法的合理性和有效性。 展开更多
关键词 风电 elman神经网络 预测 模拟退火 鲸鱼优化算法
在线阅读 下载PDF
基于改进SFLA-Elman神经网络的电离层杂波抑制方法
5
作者 刘强 尚尚 +2 位作者 乔铁柱 祝健 石依山 《电讯技术》 北大核心 2024年第6期848-856,共9页
针对高频地波雷达目标检测中电离层杂波的干扰问题,提出了一种基于改进混合蛙跳算法优化Elman神经网络预测抑制电离层杂波的策略。为解决混合蛙跳算法初始种群分布不均匀、收敛精度低、易陷于局部极值等问题,引入Cubic混沌映射、莱维飞... 针对高频地波雷达目标检测中电离层杂波的干扰问题,提出了一种基于改进混合蛙跳算法优化Elman神经网络预测抑制电离层杂波的策略。为解决混合蛙跳算法初始种群分布不均匀、收敛精度低、易陷于局部极值等问题,引入Cubic混沌映射、莱维飞行策略、非线性平衡因子和复制操作,增强种群多样性,提高算法搜索能力。利用改进后的算法和其他算法分别优化Elman神经网络预测抑制模型,结果表明,改进后的算法无论是在收敛精度和稳定性上,还是在临近距离单元电离层杂波的预测抑制上,都取得了显著的提升。在基本保留目标信号的基础上,平均信杂比较原始回波提升18.52 dB,较原始混合蛙跳算法提升1.08 dB,对于电离层杂波的抑制具有较高应用价值。 展开更多
关键词 高频地波雷达 电离层杂波抑制 混合蛙跳算法 elman神经网络 莱维飞行
在线阅读 下载PDF
基于PSO-Elman神经网络的井底风温预测模型
6
作者 程磊 李正健 +1 位作者 史浩镕 王鑫 《工矿自动化》 CSCD 北大核心 2024年第1期131-137,共7页
目前井下风温预测大多采用BP神经网络,但其预测精度受学习样本数量的影响,且容易陷入局部最优,Elman神经网络具备局部记忆能力,提高了网络的稳定性和动态适应能力,但仍然存在收敛速度过慢、易陷入局部最优的问题。针对上述问题,采用粒... 目前井下风温预测大多采用BP神经网络,但其预测精度受学习样本数量的影响,且容易陷入局部最优,Elman神经网络具备局部记忆能力,提高了网络的稳定性和动态适应能力,但仍然存在收敛速度过慢、易陷入局部最优的问题。针对上述问题,采用粒子群优化(PSO)算法对Elman神经网络的权值和阈值进行优化,建立了基于PSO-Elman神经网络的井底风温预测模型。分析得出入风相对湿度、入风温度、地面大气压力和井筒深度是井底风温的主要影响因素,因此将其作为模型的输入数据,模型的输出数据为井底风温。在相同样本数据集下的实验结果表明:Elman模型迭代90次后收敛,PSO-Elman模型迭代41次后收敛,说明PSO-Elman模型收敛速度更快;与BP神经网络模型、支持向量回归模型和Elman模型相比,PSO-Elman模型的预测误差较低,平均绝对误差、均方误差(MSE)、平均绝对百分比误差分别为0.376 0℃,0.278 3,1.95%,决定系数R^(2)为0.992 4,非常接近1,表明预测模型具有良好的预测效果。实例验证结果表明,PSO-Elman模型的相对误差范围为-4.69%~1.27%,绝对误差范围为-1.06~0.29℃,MSE为0.26,整体预测精度可满足井下实际需要。 展开更多
关键词 井下热害防治 井底风温预测 粒子群优化算法 elman神经网络 PSO-elman
在线阅读 下载PDF
基于RSSR融合RNGO-Elman神经网络的室内可见光定位
7
作者 张慧颖 盛美春 +2 位作者 梁士达 马成宇 李月月 《半导体光电》 CAS 北大核心 2024年第3期449-457,共9页
针对动态环境下基于接收信号强度的传统可见光定位方法定位精度低、稳定性差等问题,提出一种基于接收信号强度比的改进北方苍鹰算法(NGO)优化Elman神经网络(RNGOElman)的室内可见光定位系统。提出选择一个辅助参考点,将待测参考点与辅... 针对动态环境下基于接收信号强度的传统可见光定位方法定位精度低、稳定性差等问题,提出一种基于接收信号强度比的改进北方苍鹰算法(NGO)优化Elman神经网络(RNGOElman)的室内可见光定位系统。提出选择一个辅助参考点,将待测参考点与辅助参考点的接收信号强度比值和接收机的真实位置作为训练集数据,建立不受动态环境影响的指纹数据库。针对NGO算法收敛速度慢、容易陷入局部最优等问题,利用折射反向学习策略初始化种群,增加种群多样性,引入非线性权重因子来加快收敛速度,避免陷入局部最优。使用优化后的NGO算法来优化Elman神经网络的初始权值和阈值,构建RNGO-Elman动态定位预测模型。仿真结果表明,在4m×4m×3m的实验空间下,优化后的RNGO-Elman定位模型平均定位误差为1.34cm,定位精度相较于Elman定位算法、NGO-Elman定位算法分别提高了82%,21%。在LED发射功率波动时,基于RSSR的RNGO-Elman定位误差为1.29cm,1.38cm。所提可见光定位方法具有定位精度高、定位性能稳定等优点。 展开更多
关键词 光通信 北方苍鹰算法 elman神经网络 接收信号强度比 可见光定位
在线阅读 下载PDF
短期光伏功率模糊Elman-DIOC神经网络预测分析 被引量:1
8
作者 刘媛媛 李峰 《机械设计与制造》 北大核心 2024年第6期26-29,共4页
为了提高短期光伏功率预测效率,设计了一种基于Elman神经网络的短期光伏功率预测方法。在确定网络结构与各项参数的基础上实现准确预测,该方法受到训练后表现出很高的准确率和合理性。研究结果表明:类簇数据表达到了较大相似度,类簇间... 为了提高短期光伏功率预测效率,设计了一种基于Elman神经网络的短期光伏功率预测方法。在确定网络结构与各项参数的基础上实现准确预测,该方法受到训练后表现出很高的准确率和合理性。研究结果表明:类簇数据表达到了较大相似度,类簇间数据表现出了明显差异特征。采用优化方法开展发电功率预测,建立预测值和实测值的关系,预测日达到了与实测值相近的预测结果,采用优化聚类算法获得了更精确预测结果。通过该算法优化后,预测误差均值明显下降,IMSE均值下降幅度约80%,获得更有效的聚类结果,采用优化聚类处理可以促进短期预测精度的有效提升。该研究可以拓宽到其它的同类领域中,具有很好的实际推广价值。 展开更多
关键词 光伏功率 elman神经网络 预测 关联度 相似度 匹配
在线阅读 下载PDF
基于K-Means^(++)和Elman神经网络的低压台区线损计算方法
9
作者 张林山 廖耀华 +3 位作者 王恩 李波 朱梦梦 王毅 《半导体光电》 CAS 北大核心 2024年第3期477-484,共8页
为了解决低压台区线损计算在理论上因线路复杂、用户众多以及数据获取困难等带来计算难度与精度不足的问题,提出了一种结合改进K-Means^(++)算法与Elman神经网络的创新计算方法。深入分析了低压台区线损的决定因素,并依据相关性分析构... 为了解决低压台区线损计算在理论上因线路复杂、用户众多以及数据获取困难等带来计算难度与精度不足的问题,提出了一种结合改进K-Means^(++)算法与Elman神经网络的创新计算方法。深入分析了低压台区线损的决定因素,并依据相关性分析构建了线损的关键特征指标集。采纳主成分分析方法实施数据降维,简化数据结构。通过改进的K-Means^(++)算法对数据集进行有效聚类,优化模型训练过程。同时,整合粒子群优化算法进一步提升Elman神经网络的性能。通过对实际数据进行仿真验证,结果证实所提出的方法在训练效率和计算精度方面表现优异。 展开更多
关键词 线损 相关系数 改进K-Means^(++)算法 elman神经网络
在线阅读 下载PDF
基于改进Elman神经网络的CFRP补强钢板界面脱粘预测研究
10
作者 王庆松 张玉 +1 位作者 张洪雨 陈柏桦 《振动与冲击》 EI CSCD 北大核心 2024年第3期120-127,共8页
针对碳纤维复合材料(carbon fiber reinforced polymer, CFRP)补强钢结构出现内部界面脱粘损伤后难以观测的问题,结合Lamb波检测方法和神经网络提出了一种界面脱粘预测方法。搭建了基于Lamb波的CFRP补强钢板信号分析试验平台,利用ABAQU... 针对碳纤维复合材料(carbon fiber reinforced polymer, CFRP)补强钢结构出现内部界面脱粘损伤后难以观测的问题,结合Lamb波检测方法和神经网络提出了一种界面脱粘预测方法。搭建了基于Lamb波的CFRP补强钢板信号分析试验平台,利用ABAQUS软件建立了CFRP补强钢板的机电耦合有限元模型,并通过试验验证了有限元模型的准确性。将长方形和圆形两种脱粘形状的信号在时域和频域内进行分析,基于自适应遗传算法改进的Elman神经网络建立了CFRP补强钢板脱粘预测模型,并将与脱粘面积相关性较高的信号特征数据作为预测模型的特征数据。对预测模型进行性能测试,脱粘形状为长方形和圆形预测值的平均绝对百分比误差分别为3.03%和8.06%,结果表明改进的Elman网络对于脱粘损伤具有较好的预测精度。 展开更多
关键词 界面脱粘 LAMB波 碳纤维复合材料(CFRP) 脱粘预测 elman神经网络
在线阅读 下载PDF
基于EMD-GM-Elman神经网络组合模型的新型电力系统新能源发电量及负荷需求量预测 被引量:1
11
作者 赵汉超 从兰美 +4 位作者 刘杰 韩子月 胡宁宁 潘广源 夏远洋 《电网与清洁能源》 CSCD 北大核心 2024年第10期132-141,共10页
针对新能源发电量预测中单一模型精度不足的问题,提出了一种EMD-GM-Elman(empirical mode decompositiongrey model-elman)神经网络组合模型。该模型通过经验模态分解(empirical mode decomposition,EMD)预处理数据,提取局部特征;利用... 针对新能源发电量预测中单一模型精度不足的问题,提出了一种EMD-GM-Elman(empirical mode decompositiongrey model-elman)神经网络组合模型。该模型通过经验模态分解(empirical mode decomposition,EMD)预处理数据,提取局部特征;利用灰色预测模型预测各本征模态函数(intrinsic mode functions,IMF),结果输入Elman神经网络捕捉动态特征;最终通过数据重构得出预测结果。仿真结果显示,该模型预测精度从传统模型的58.1%提高到65.14%。 展开更多
关键词 新型电力系统 新能源发电量预测 负荷需求预测 灰色理论 elman神经网络 经验模态分解
在线阅读 下载PDF
基于鱼群优化算法和Elman神经网络的短期电力负荷预测 被引量:1
12
作者 杨玺 陈爽 +3 位作者 彭子睿 高镇 王安龙 陈凯辉 《电气自动化》 2024年第5期15-18,共4页
精确的短期负荷预测允许用户选择合适的能源利用策略,并最大限度地降低电费支出。为实现更为精确且全局最优的短期负荷预测,提出一种基于鱼群优化算法和Elman神经网络的短期电力负荷预测方案。首先利用小波变换将时间序列分解成分量,并... 精确的短期负荷预测允许用户选择合适的能源利用策略,并最大限度地降低电费支出。为实现更为精确且全局最优的短期负荷预测,提出一种基于鱼群优化算法和Elman神经网络的短期电力负荷预测方案。首先利用小波变换将时间序列分解成分量,并基于对立人工鱼群优化算法进行特征选择。接着基于Elman神经网络模型的水波优化算法进行短期负荷预测,从而显著提高了预测的精确度。最后应用逆小波变换得到每小时的负荷预测数据,借助武汉市电力负荷数据对所提方案进行验证评估。验证结果表明所提方案在冬季数据和夏季数据上的平均绝对百分比误差分别为1.43%和1.98%,明显优于支持向量机、混合网络和小波变换-神经进化算法。 展开更多
关键词 短期负荷预测 小波变换 对立人工鱼群优化算法 elman神经网络模型 水波优化算法 预测精度
在线阅读 下载PDF
基于Elman神经网络的土壤墒情预测模型研究 被引量:1
13
作者 杨靖峰 王锐竹 +1 位作者 于澎湃 李争 《天津农林科技》 2024年第3期10-15,32,共7页
为实现土壤墒情预测,文章以天津市蓟州区、静海区、宁河区、滨海新区的10个气象墒情自动监测站2018—2021年的3年数据为基础,对土壤墒情预测模型进行研究建立,并选取站点编号、空气温度、空气湿度、风速、风向等19项影响因子训练Elman... 为实现土壤墒情预测,文章以天津市蓟州区、静海区、宁河区、滨海新区的10个气象墒情自动监测站2018—2021年的3年数据为基础,对土壤墒情预测模型进行研究建立,并选取站点编号、空气温度、空气湿度、风速、风向等19项影响因子训练Elman神经网络,对土壤墒情进行短期(24 h)、中期(7 d)、长期(14 d)预测。结果显示,3个时期土壤墒情平均预测精度分别达到96.64%、90.60%、85.59%,表明Elman神经网络具有稳定性好、精度高的特点,训练出的土壤墒情预测模型准确度高,可为农业生产管理提供依据。 展开更多
关键词 土壤墒情 elman神经网络 短期预测 中长期预测
在线阅读 下载PDF
基于数据处理与Elman神经网络模型的泥石流危险性预测
14
作者 孙晓东 韩宁博 袁颖 《河北地质大学学报》 2024年第6期93-99,共7页
泥石流是一种严重威胁人民生命财产安全的山地地质灾害,对其危险性进行准确预测具有重要意义。以云南省37组泥石流样本为例,利用灰色关联度(GRA)技术筛选并排除了对泥石流危险性影响不大的评价指标,最终确定8个核心指标,然后利用主成分... 泥石流是一种严重威胁人民生命财产安全的山地地质灾害,对其危险性进行准确预测具有重要意义。以云南省37组泥石流样本为例,利用灰色关联度(GRA)技术筛选并排除了对泥石流危险性影响不大的评价指标,最终确定8个核心指标,然后利用主成分分析(PCA)方法对核心指标进行降维,提取主成分,将综合指标代入Elman神经网络,对泥石流危险性等级进行预测。结果表明:与其他模型相比,GRA-PCA-Elman模型准确率可达90.91%,并具备出色的泛化能力,适用于泥石流危险性预测;GRA可以去除对泥石流危险性作用相对较小的评价指标;PCA能够有效消除指标之间的关联信息,提高模型预测准确率。 展开更多
关键词 泥石流 灰色关联度 主成分分析 elman神经网络 危险性预测
在线阅读 下载PDF
SSA-Elman神经网络模型在建筑物沉降预测中的应用
15
作者 兰丽景 陈晓婷 毛洪孝 《测绘与空间地理信息》 2024年第4期203-206,共4页
为了提高建筑物沉降变形预测精度,最大限度地减少监测数据中非变形噪声分量对预测结果的影响,本文在Elman神经网络模型的基础上引入奇异谱分析方法,构建新的SSA-Elman神经网络模型。首先利用SSA方法提取沉降监测数据中的趋势分量与周期... 为了提高建筑物沉降变形预测精度,最大限度地减少监测数据中非变形噪声分量对预测结果的影响,本文在Elman神经网络模型的基础上引入奇异谱分析方法,构建新的SSA-Elman神经网络模型。首先利用SSA方法提取沉降监测数据中的趋势分量与周期分量,剔除噪声分量,提高监测数据信噪比;其次通过Elman神经网络模型分别对趋势分量、周期分量进行预测,得到对应分量预测结果;最后重构趋势分量与周期分量预测结果得到最终预测结果。通过实测建筑物沉降数据分别对Elman神经网络模型与SSA-Elman神经网络模型进行建模与预测,结果表明,SSA-Elman神经网络模型的预测精度更高,更适应长周期预测。 展开更多
关键词 elman神经网络模型 奇异谱分析 建筑物 沉降预测 去噪
在线阅读 下载PDF
改进Elman神经网络模型在地铁沉降监测中的应用
16
作者 徐超良 周波 《测绘与空间地理信息》 2024年第12期207-210,共4页
以某地铁沉降监测数据为例,提出一种改进Elman神经网络预测模型。首先,发挥局部均值分解(LMD)在信号自适应分解的优势,使用该算法对地铁沉降监测序列进行多尺度分解,得到具有不同尺度特征的乘积函数(PF);其次,发挥Elman神经网络模型在... 以某地铁沉降监测数据为例,提出一种改进Elman神经网络预测模型。首先,发挥局部均值分解(LMD)在信号自适应分解的优势,使用该算法对地铁沉降监测序列进行多尺度分解,得到具有不同尺度特征的乘积函数(PF);其次,发挥Elman神经网络模型在数据序列预测中的优势,对不同PF分量进行训练与预测;最后,重构不同PF分量预测结果得到最终预测成果。实验表明,本文提出的组合预测模型较单一的BP神经网络模型、Elman神经网络模型的预测精度更高,其中均方根误差(RMSE)分别降低了1.0602 mm、0.0698 mm;平均绝对误差(MAE)分别降低了0.8660 mm、0.0474 mm;平均绝对误差百分比(MAPE)分别降低了0.2189、0.0068。 展开更多
关键词 局部均值分解 elman神经网络 组合模型 地铁沉降预测 精度分析
在线阅读 下载PDF
以Elman神经网络为基础的水稻生长预测分析
17
作者 卢帮强 魏堃蓉 《河北农机》 2024年第23期106-108,共3页
水稻生长预测是实现农业精细化管理的关键,构建高效、准确的水稻生长预测模型成为实现农业精细化管理的重要一环。Elman神经网络因其独特的反馈机制与动态处理能力,在水稻生长这一复杂且具有高度非线性的系统中展现出显著优势,所以,构... 水稻生长预测是实现农业精细化管理的关键,构建高效、准确的水稻生长预测模型成为实现农业精细化管理的重要一环。Elman神经网络因其独特的反馈机制与动态处理能力,在水稻生长这一复杂且具有高度非线性的系统中展现出显著优势,所以,构建基于Elman神经网络的水稻生长预测模型,对提高水稻产量、指导种植具有重要意义。水稻生长受品种和环境因素的影响,建模同样具有非线性特征。本研究利用Elman神经网络对水稻生长期的情况进行阶段性的预测,并对产量进行预测。结果表明,以Elman神经网络为基础的水稻生长预测模型能够达到较高的预测精度,并且在实际水稻生长预测中得到较好的应用效果,能够动态化预测不同生育期的水稻生长情况,进而为精确的灌溉决策提供支持。 展开更多
关键词 elman神经网络 水稻生长 预测
在线阅读 下载PDF
灰色Elman神经网络的电网中长期负荷预测 被引量:37
18
作者 张健美 周步祥 +2 位作者 林楠 张勤 陈杰 《电力系统及其自动化学报》 CSCD 北大核心 2013年第4期145-149,共5页
为了降低原始负荷数据突变对Elman神经网络预测精度的影响,考虑电网负荷预测样本时变性强、不确定因素影响多的特点,利用Elman神经网络计算和适应时变特性的能力强、误差可控以及灰色理论所需计算数据少、计算量小,在样本较少的情况下... 为了降低原始负荷数据突变对Elman神经网络预测精度的影响,考虑电网负荷预测样本时变性强、不确定因素影响多的特点,利用Elman神经网络计算和适应时变特性的能力强、误差可控以及灰色理论所需计算数据少、计算量小,在样本较少的情况下也能达到较高预测精度的优点,建立灰色Elman神经网络的负荷预测模型,首次将灰色Elman神经网络模型在中长期负荷预测中应用。实例结果表明,该预测方法提高了预测精度、取得了较快的收敛速度,说明该模型是可行而有效的。 展开更多
关键词 elman神经网络 灰色理论 中长期负荷 负荷预测
在线阅读 下载PDF
基于EEMD-样本熵和Elman神经网络的短期电力负荷预测 被引量:56
19
作者 陈艳平 毛弋 +2 位作者 陈萍 童伟 袁建亮 《电力系统及其自动化学报》 CSCD 北大核心 2016年第3期59-64,共6页
针对电力负荷序列的非线性、非平稳性等特点,提出了一种基于集总经验模式分解EEMD-样本熵和El-man神经网络的短期负荷预测方法。为了减小电力负荷序列局部分析的计算规模以及提高负荷预测的精度,先利用EEMD-样本熵将原始电力负荷序列分... 针对电力负荷序列的非线性、非平稳性等特点,提出了一种基于集总经验模式分解EEMD-样本熵和El-man神经网络的短期负荷预测方法。为了减小电力负荷序列局部分析的计算规模以及提高负荷预测的精度,先利用EEMD-样本熵将原始电力负荷序列分解成一系列复杂度差异明显的子序列;然后在综合考虑温度及日期类型等因素对各子序列影响的基础上,根据各子序列的特点构造不同的Elman神经网络对各子序列分别进行预测;最后将各子序列的预测结果叠加得到最终预测值,并对EUNITE国际电力负荷预测竞赛公布的数据进行仿真实验。仿真结果表明该方法能有效地提高负荷预测的精度。 展开更多
关键词 短期负荷预测 样本熵 集总经验模式分解 elman神经网络
在线阅读 下载PDF
基于Elman神经网络的动力配煤发热量及着火温度的预测 被引量:23
20
作者 周孑民 朱再兴 +2 位作者 刘艳军 彭好义 高强 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第12期3871-3875,共5页
针对采用实验法测定电厂动力配煤的发热量和着火温度存在操作繁琐和信息滞后较大等不足,建立Elman神经网络预测模型。该网络模型在学习过程中确定混煤的发热量和着火温度与单煤的水分、灰分、挥发分之间的非线性映射关系。模型利用单煤... 针对采用实验法测定电厂动力配煤的发热量和着火温度存在操作繁琐和信息滞后较大等不足,建立Elman神经网络预测模型。该网络模型在学习过程中确定混煤的发热量和着火温度与单煤的水分、灰分、挥发分之间的非线性映射关系。模型利用单煤的水分、灰分和挥发分含量直接预测混煤的发热量和着火温度,预测结果误差较小。利用置信区间分析法对预测模型的预测效果进行检验。研究结果表明:预测模型具有较高的可靠性和置信度。 展开更多
关键词 elman神经网络 动力配煤 发热量 着火温度 预测模型
在线阅读 下载PDF
上一页 1 2 54 下一页 到第
使用帮助 返回顶部