期刊文献+
共找到79篇文章
< 1 2 4 >
每页显示 20 50 100
基于密度噪声应用空间聚类算法的机载激光雷达建筑物点云提取与单体化 被引量:16
1
作者 吕富强 唐诗华 +1 位作者 何广焕 蒙金龙 《科学技术与工程》 北大核心 2022年第9期3446-3452,共7页
针对机载激光雷达建筑物点云提取过程中自动化提取困难,以及提取后的建筑物单体化过程烦琐等问题,提出一种基于密度噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的机载雷达建筑物点云提... 针对机载激光雷达建筑物点云提取过程中自动化提取困难,以及提取后的建筑物单体化过程烦琐等问题,提出一种基于密度噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的机载雷达建筑物点云提取与单体化的方法。该方法对预处理后的点云数据基于DBSCAN算法进行去噪与初步的提取,通过三维密度聚类,将建筑物的点云进行提取与自动单体化。根据建筑物点云密度的特点,进行二维的密度聚类,结合数字正射影像图(digital orthophoto map,DOM)进行点云分割。最后将处理后的点云数据进行优化处理,并将建筑物单体化簇类进行提取,得到单体化建筑物点云。结果表明:提取的建筑物点云数量正确率为97.36%,轮廓边长的中误差为0.077,可以有效地提取出建筑物点云并将其单体化。 展开更多
关键词 机载激光雷达 建筑物点云 基于密度噪声应用空间(dbscan) 密度 点云提取 单体化
在线阅读 下载PDF
基于空间密度的群以噪声发现聚类算法研究 被引量:19
2
作者 毕方明 王为奎 陈龙 《南京大学学报(自然科学版)》 CSCD 北大核心 2012年第4期491-498,共8页
针对基于密度的群以噪声发现聚类算法(density-based spatial clustering of applications withnoise,DBSCAN)的所需内存及I/O消耗大;空间聚类的密度不均匀时,采用全局统一的变量,聚类质量较差;对于输入参数敏感性较高等三个不足进行了... 针对基于密度的群以噪声发现聚类算法(density-based spatial clustering of applications withnoise,DBSCAN)的所需内存及I/O消耗大;空间聚类的密度不均匀时,采用全局统一的变量,聚类质量较差;对于输入参数敏感性较高等三个不足进行了改进.首先根据数据的空间分布特性,将整个数据空间划分为多个较小的分区,使分区的局部密度相对更均匀;然后将每个局部分区运用改进的DBSCAN算法进行聚类,改进的算法可以根据空间数据的分布,对一个中心点自适应的选取近邻,并对这些近邻点进行取样、扩展,有效提高了算法的准确性和效率;接着将所得到的聚类结果按照合并规则进行合并.最后通过仿真实验,验证了改进的DBSCAN算法解决了内存消耗过大、聚类质量差及全局参数敏感的问题. 展开更多
关键词 数据挖掘 空间 基于密度的群以噪声发现 数据分区 参数自适应
在线阅读 下载PDF
Greedy DBSCAN:一种针对多密度聚类的DBSCAN改进算法 被引量:45
3
作者 冯振华 钱雪忠 赵娜娜 《计算机应用研究》 CSCD 北大核心 2016年第9期2693-2696,2700,共5页
针对基于密度的DBSCAN算法对于输入参数敏感、无法聚类多密度数据集等问题,提出了一种贪心的DBSCAN改进算法(greedy DBSCAN)。算法仅需输入一个参数Min Pts,采用贪心策略自适应地寻找Eps半径参数进行簇发现,利用相对稠密度识别和判定噪... 针对基于密度的DBSCAN算法对于输入参数敏感、无法聚类多密度数据集等问题,提出了一种贪心的DBSCAN改进算法(greedy DBSCAN)。算法仅需输入一个参数Min Pts,采用贪心策略自适应地寻找Eps半径参数进行簇发现,利用相对稠密度识别和判定噪声数据,在随机寻找核对象过程中使用邻域查询方式提升算法效率,最终通过簇的合并产生最终的聚类结果。实验结果表明,改进后的算法能有效地分离噪声数据,识别多密度簇,聚类准确度较高。 展开更多
关键词 密度 贪心策略 相对稠密度 邻域查询 噪声数据 dbscan
在线阅读 下载PDF
一种基于密度的空间数据流在线聚类算法 被引量:28
4
作者 于彦伟 王沁 +1 位作者 邝俊 何杰 《自动化学报》 EI CSCD 北大核心 2012年第6期1051-1059,共9页
为了解决空间数据流中任意形状簇的聚类问题,提出了一种基于密度的空间数据流在线聚类算法(On-line density-based clustering algorithm for spatial data stream,OLDStream),该算法在先前聚类结果上聚类增量空间数据,仅对新增空间点... 为了解决空间数据流中任意形状簇的聚类问题,提出了一种基于密度的空间数据流在线聚类算法(On-line density-based clustering algorithm for spatial data stream,OLDStream),该算法在先前聚类结果上聚类增量空间数据,仅对新增空间点及其满足核心点条件的邻域数据做局部聚类更新,降低聚类更新的时间复杂度,实现对空间数据流的在线聚类.OLDStream算法具有快速处理大规模空间数据流、实时获取全局任意形状的聚类簇结果、对数据流的输入顺序不敏感、并能发现孤立点数据等优势.在真实数据和合成数据上的综合实验验证了算法的聚类效果、高效率性和较高的可伸缩性,同时实验结果的统计分析显示仅有4%的空间点消耗最坏运行时间,对每个空间点的平均聚类时间约为0.033ms. 展开更多
关键词 空间数据挖掘 数据流 基于密度 在线算法 噪声处理
在线阅读 下载PDF
基于密度的空间聚类算法在照明运维中的应用
5
作者 李今 石晓润 《软件导刊》 2017年第4期148-151,共4页
城市照明数字化综合管理系统应用过程中会产生大量设施维护事件记录,这些数据在类型和空间分布上蕴含大量信息,对这些数据进行分析并加以应用很有必要。对基于密度的空间聚类算法(DBSCAN)进行了研究。介绍了DBSCAN算法的基本概念和原理... 城市照明数字化综合管理系统应用过程中会产生大量设施维护事件记录,这些数据在类型和空间分布上蕴含大量信息,对这些数据进行分析并加以应用很有必要。对基于密度的空间聚类算法(DBSCAN)进行了研究。介绍了DBSCAN算法的基本概念和原理,将该算法应用于城市照明管理业务数据中,对照明设施维护热点分布进行聚类分析,根据聚类结果为城市照明运维管理区域划分和运维资源规划提供参考依据。 展开更多
关键词 空间 基于密度 dbscan 照明设施维护
在线阅读 下载PDF
基于DBSCAN聚类和LSTM网络的装甲车辆集群轨迹预测方法
6
作者 陈刚 王国新 +3 位作者 明振军 陈旺 商曦文 阎艳 《兵工学报》 EI CAS CSCD 北大核心 2024年第12期4295-4310,共16页
针对装甲车辆运动状态复杂性、战场态势不确定性、战术迷惑和欺骗性导致装甲车辆集群运动轨迹难以准确预测的问题,提出一种基于密度的空间聚类应用(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)和长短时记忆(L... 针对装甲车辆运动状态复杂性、战场态势不确定性、战术迷惑和欺骗性导致装甲车辆集群运动轨迹难以准确预测的问题,提出一种基于密度的空间聚类应用(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)和长短时记忆(Long Short Term Memory,LSTM)神经网络的装甲车辆集群轨迹预测方法。根据装甲车辆的斜坡上行驶、转向和车-车交互行驶状态,建立运动学模型。选取机动特征、环境特征和车-车交互特征等轨迹特征信息,基于双层LSTM网络预测单个装甲车辆的轨迹。基于DBSCAN算法将多条单装预测轨迹进行分段、相似度计算和聚类,获得集群代表轨迹作为装甲车辆集群的预测轨迹。仿真结果表明,所提方法能够有效预测装甲车辆集群轨迹,实现料敌于先、谋敌于前。 展开更多
关键词 装甲车辆 集群轨迹预测 基于密度空间应用 长短时记忆网络 轨迹预测系统
在线阅读 下载PDF
一种基于密度的空间聚类算法
7
作者 王晓洁 方丽娜 《新乡学院学报》 2008年第1期59-61,共3页
针对DBSCAN算法I/O开销和内存消耗大的缺陷,提出了基于层次合并的密度算法,基于密度的空间聚类算法可以有效地过滤噪声和孤立点数据,该算法在对于处理较大数据集上具有较大优势。
关键词 空间算法 密度 dbscan 较大数据集
在线阅读 下载PDF
DBSCAN聚类和改进的双边滤波算法在点云去噪中的应用 被引量:23
8
作者 曲金博 王岩 赵琪 《测绘通报》 CSCD 北大核心 2019年第11期89-92,共4页
采用基于密度的DBSCAN聚类算法对点云数据进行去噪处理,然后通过改进的双边滤波方法进行光顺处理实现点云平滑效果,最终的结果不仅有效去除了噪声点,还保留了点云模型的特征。以沈阳民国时期代表性的建筑--沈阳金融博物馆为试验模型进... 采用基于密度的DBSCAN聚类算法对点云数据进行去噪处理,然后通过改进的双边滤波方法进行光顺处理实现点云平滑效果,最终的结果不仅有效去除了噪声点,还保留了点云模型的特征。以沈阳民国时期代表性的建筑--沈阳金融博物馆为试验模型进行试验,结果表明:通过DBSCAN聚类算法处理后得到的点云数据,再经改进的双边滤波处理所得到的数据远远比原点云数据直接运用改进的双边滤波处理得到的数据精度高,点云去噪效果更好。 展开更多
关键词 dbscan算法 双边滤波方法 噪声 点云 密度
在线阅读 下载PDF
基于密度的面板数据聚类分析 被引量:7
9
作者 杨娟 谢远涛 《统计与信息论坛》 CSSCI 2014年第2期23-28,共6页
研究面板数据聚类问题过程中,在相似性度量上,用Logistic回归模型构造相似系数和非对称相似矩阵。在聚类算法上,目前的聚类算法只适用于对称的相似矩阵。在非对称相似矩阵的聚类算法上,采用最佳优先搜索和轮廓系数,改进DBSCAN聚类方法,... 研究面板数据聚类问题过程中,在相似性度量上,用Logistic回归模型构造相似系数和非对称相似矩阵。在聚类算法上,目前的聚类算法只适用于对称的相似矩阵。在非对称相似矩阵的聚类算法上,采用最佳优先搜索和轮廓系数,改进DBSCAN聚类方法,提出BF—DBSCAN方法。通过实例分析,比较了BF—DBSCAN和DBSCAN方法的聚类结果,以及不同参数设置对BF—DBSCAN聚类结果的影响,验证了该方法的有效性和实用性。 展开更多
关键词 面板数据 LOGISTIC回归模型 基于密度应用噪声空间 最佳优先搜索 轮廓系数
在线阅读 下载PDF
参数自适应的网格密度聚类算法 被引量:3
10
作者 郑诚 曹杨 《计算机应用研究》 CSCD 北大核心 2019年第11期3278-3281,3309,共5页
针对网格密度聚类算法存在的网格宽度和密度阈值难以确定以及聚类精度不高的缺陷,提出了一种参数自适应的网格密度聚类算法。定义了数据集标准化离散度的概念,运用数据集的自然分布信息自适应地计算出每一维较优的分割宽度,对不同的密... 针对网格密度聚类算法存在的网格宽度和密度阈值难以确定以及聚类精度不高的缺陷,提出了一种参数自适应的网格密度聚类算法。定义了数据集标准化离散度的概念,运用数据集的自然分布信息自适应地计算出每一维较优的分割宽度,对不同的密度阈值统计其噪声样本对象的数量,绘制了噪声曲线,从噪声曲线中获得最佳的密度阈值,而且增加了类簇边缘处理技术,进一步提高了聚类的质量。仿真实验表明,改进后的算法可获得更好的聚类效果。 展开更多
关键词 网格密度 空间划分 噪声曲线
在线阅读 下载PDF
基于毫米波雷达的近邻目标聚类和跟踪
11
作者 张春杰 赵佳琦 陈奇 《应用科技》 CAS 2024年第5期219-227,共9页
为解决毫米波雷达在对多目标跟踪时目标近邻聚类失败导致的目标数目低估和跟踪精度下降问题,提出一种基于概率假设密度(probability hypothesis density,PHD)滤波器的量测集联合划分方法。利用带噪声密度空间聚类(density based spatial... 为解决毫米波雷达在对多目标跟踪时目标近邻聚类失败导致的目标数目低估和跟踪精度下降问题,提出一种基于概率假设密度(probability hypothesis density,PHD)滤波器的量测集联合划分方法。利用带噪声密度空间聚类(density based spatial clustering of applications with noise,DBSCAN)算法对采集到的量测集进行初步划分。通过PHD滤波器的预测值判断初步划分的点云簇是否存在重叠簇。针对重叠簇,利用滤波器预测值改进高斯混合模型(Gaussian mixed model,GMM)聚类算法并进行子划分。在仿真和实际环境中进行算法测试,仿真结果表明,所提算法能正确划分并跟踪近邻的目标,相比其他算法具有更好的跟踪精度。实测结果进一步验证了该算法能够成功识别近邻目标数量并跟踪,具有一定的工程实践意义。 展开更多
关键词 毫米波雷达 扩展目标 多目标 概率假设密度 噪声密度空间 联合划分 近邻目标 高斯混合模型
在线阅读 下载PDF
基于AP密度聚类方法的雷达辐射源信号识别 被引量:2
12
作者 王美玲 张复春 杨承志 《舰船电子对抗》 2012年第3期1-5,共5页
未知雷达辐射源信号识别一直是雷达对抗情报分析中的难题。针对基于密度的聚类算法在处理不均匀样本时识别率较低的缺陷,将该算法与亲和传递(AP)聚类算法结合,提出一种基于AP密度聚类的识别方法。该方法先利用AP聚类方法对数据样本进行... 未知雷达辐射源信号识别一直是雷达对抗情报分析中的难题。针对基于密度的聚类算法在处理不均匀样本时识别率较低的缺陷,将该算法与亲和传递(AP)聚类算法结合,提出一种基于AP密度聚类的识别方法。该方法先利用AP聚类方法对数据样本进行初步聚类,再设定相关参数,运用基于密度的带有噪声的空间聚类(DBSCAN)算法进行二次聚类。相对于原样本,初始聚类结果分布具有一定的代表性,容易找到适合DBSCAN方法的参数值。测试表明该方法具有较高的识别率。 展开更多
关键词 辐射源识别 亲和传递 基于密度的带有噪声空间
在线阅读 下载PDF
基于AP密度聚类方法的雷达辐射源信号识别
13
作者 郁平 高岚岚 +1 位作者 任浩 贾英杰 《矿业工程》 CAS 2012年第4期1-2,共2页
未知雷达辐射源信号识别一直是雷达对抗情报分析中的难题。针对基于密度的聚类算法在处理不均匀样本时识别率较低的缺陷,将该算法与亲和传递(AP)聚类算法结合,提出一种基于AP密度聚类的识别方法。该方法先利用AP聚类方法对数据样本进... 未知雷达辐射源信号识别一直是雷达对抗情报分析中的难题。针对基于密度的聚类算法在处理不均匀样本时识别率较低的缺陷,将该算法与亲和传递(AP)聚类算法结合,提出一种基于AP密度聚类的识别方法。该方法先利用AP聚类方法对数据样本进行初步聚类,再设定相关参数,运用基于密度的带有噪声的空间聚类(DBSCAN)算法进行二次聚类。相对于原样本,初始聚类结果分布具有一定的代表性,容易找到适合DBSCAN方法的参数值。测试表明该方法具有较高的识别率。 展开更多
关键词 辐射源识别 亲和传递 基于密度的带有噪声空间
在线阅读 下载PDF
基于网络化密度聚类的船舶停泊点数据挖掘 被引量:1
14
作者 叶仁道 黄靓莹 《水运管理》 2017年第8期20-23,共4页
为获取船舶停泊行为规律,以大连港、天津港、青岛港、德国罗斯托克港、巴西桑托斯港和荷兰格罗宁根港等全球六大港口水域为例,基于Hive数据仓库和R语言平台,利用网格化DBSCAN算法,提取船舶在各港口水域停泊点位置、面积等信息,进而基于... 为获取船舶停泊行为规律,以大连港、天津港、青岛港、德国罗斯托克港、巴西桑托斯港和荷兰格罗宁根港等全球六大港口水域为例,基于Hive数据仓库和R语言平台,利用网格化DBSCAN算法,提取船舶在各港口水域停泊点位置、面积等信息,进而基于停泊点可视化结果,验证这六大港口实时可视化结果与基于历史数据挖掘结果相符。研究成果有助于保障港口水域船舶安全通航,亦为船舶交通管理系统智能化奠定基础,从而推动港口行业持续、健康发展。 展开更多
关键词 船舶自动识别系统(AIS) 数据挖掘技术 Hive数据仓库 网格化 空间密度(dbscan)
在线阅读 下载PDF
聚类分析技术在CRM中的应用研究
15
作者 王海燕 李晓玲 《电子世界》 2015年第18期186-187,共2页
近年来CRM已经被越来越多的企业所重视,管理者也都深深的意识到了客户关系对企业发展的重要性。而CRM的核心是客户理解,在充分理解客户的基础上做出正确的决策,实现利润最大化,实现客户体验最优化。本文将数据挖掘应用到客户关系管理中... 近年来CRM已经被越来越多的企业所重视,管理者也都深深的意识到了客户关系对企业发展的重要性。而CRM的核心是客户理解,在充分理解客户的基础上做出正确的决策,实现利润最大化,实现客户体验最优化。本文将数据挖掘应用到客户关系管理中,利用基于密度的聚类方法DBSCAN算法来对进客户理解。所用数据为某4s店的客户消费记录,通过分群来总结各个客户群的特征,继而制定具有针对性的策略。 展开更多
关键词 客户理解 分析 客户关系管理 具有噪声应用基于密度空间 数据挖掘
在线阅读 下载PDF
基于传递熵密度聚类的用户窃电识别方法 被引量:17
16
作者 刘康 李彬 +4 位作者 薛阳 杨艺宁 徐英辉 刘爱国 苏盛 《中国电机工程学报》 EI CSCD 北大核心 2022年第20期7535-7545,共11页
在配电线路/台区中,接入用户的用电量与线损电量间存在因果关系,正常用户电量变化对线损电量的影响有限,而窃电用户的用电量对线损电量的影响异于正常用户。传递熵能衡量变量间的信息传递,是评价因果性的重要指标。该文提出基于传递熵... 在配电线路/台区中,接入用户的用电量与线损电量间存在因果关系,正常用户电量变化对线损电量的影响有限,而窃电用户的用电量对线损电量的影响异于正常用户。传递熵能衡量变量间的信息传递,是评价因果性的重要指标。该文提出基于传递熵密度聚类的用户窃电识别方法。首先运用传递熵指向性筛选出对线路/台区线损电量因果关联较强的用户;然后构建其与线损电量的传递熵模型,计算不同时长的用户用电量对线损电量的传递熵值,以衡量其信息传递量;再结合密度聚类算法,将传递熵曲线偏离正常用户类簇的识别为与线损有强因果性的窃电用户。最后,基于已查证的高损台区和长距离配电线路实际数据,验证所提方法的有效性。 展开更多
关键词 窃电 传递熵 基于密度噪声应用空间 因果关联 线损电量
在线阅读 下载PDF
一种基于目标点云分布特性的动态聚类算法
17
作者 李彩虹 何晨阳 +1 位作者 高锋 陈佳欣 《汽车安全与节能学报》 CAS CSCD 北大核心 2024年第2期261-267,共7页
激光雷达在自动驾驶系统的目标检测任务中发挥着重要作用,但其扫描机理会使得点云分布不均匀,常规聚类算法由于参数固定会导致较多的错误聚类。为解决该问题,该文以椭圆形状作为邻域空间,设计基于采样点位置的邻域自适应调整策略,提出... 激光雷达在自动驾驶系统的目标检测任务中发挥着重要作用,但其扫描机理会使得点云分布不均匀,常规聚类算法由于参数固定会导致较多的错误聚类。为解决该问题,该文以椭圆形状作为邻域空间,设计基于采样点位置的邻域自适应调整策略,提出一种基于目标点云分布特性的动态聚类算法。通过正确聚类、过聚类等综合结果评估算法的性能,在KITTI数据集上进行了数值分析得到算法参数,并在校园环境中进行了实车对比实验。结果表明:所提算法能减少基于密度的噪声应用空间聚类(DBSCAN)中固定邻域所造成的70.60%过聚类、49.76%欠聚类等错误结果,从而有效提高算法的综合聚类性能。 展开更多
关键词 智能汽车 目标检测 激光雷达 点云 KITTI数据集 基于密度噪声应用空间(dbscan)
在线阅读 下载PDF
基于卡尔曼滤波和改进DBSCAN聚类组合的GPS定位算法 被引量:7
18
作者 葛倩 侯守明 赵文涛 《全球定位系统》 CSCD 2021年第1期28-35,共8页
实时获取智能移动终端的地理位置信息是增强现实(AR)实景智能导航系统实现的关键,为了提高智能终端GPS定位的精度,提出了一种基于卡尔曼滤波与改进的具有噪声的基于密度的聚类方法(DBSCAN)结合的GPS组合定位优化方法.通过对GPS系统采集... 实时获取智能移动终端的地理位置信息是增强现实(AR)实景智能导航系统实现的关键,为了提高智能终端GPS定位的精度,提出了一种基于卡尔曼滤波与改进的具有噪声的基于密度的聚类方法(DBSCAN)结合的GPS组合定位优化方法.通过对GPS系统采集到的位置坐标数据进行卡尔曼滤波,去除较大的数据波动,控制定位误差范围,采用DBSCAN聚类算法进行分类去噪和二次聚类,对类中数据求得算术均值和类间数据总数进行加权求重心,确定位置坐标.实验结果表明,提出的算法能有效提高GPS单点定位精度,减少定位误差,同时很好地满足了AR实景智能导航系统实时性和鲁棒性的要求. 展开更多
关键词 GPS 定位精度 卡尔曼滤波 具有噪声基于密度方法(dbscan) 联合定位
在线阅读 下载PDF
基于DBSCAN选择性聚类集成的岩体结构面优势产状分组方法 被引量:8
19
作者 张化进 吴顺川 韩龙强 《岩土力学》 EI CAS CSCD 北大核心 2022年第6期1585-1595,共11页
针对单个结构面聚类模型存在误判或漏选风险、难以有效识别噪点与孤值等问题,提出利用具有噪声的基于密度的聚类(DBSCAN)算法进行选择性聚类集成的岩体结构面优势产状分组方法。首先,将结构面产状进行空间坐标转换,以单位法向量的夹角... 针对单个结构面聚类模型存在误判或漏选风险、难以有效识别噪点与孤值等问题,提出利用具有噪声的基于密度的聚类(DBSCAN)算法进行选择性聚类集成的岩体结构面优势产状分组方法。首先,将结构面产状进行空间坐标转换,以单位法向量的夹角正弦值作为相似性度量标准。进而,基于DBSCAN算法构建一定数量具有差异性的基聚类器,借助选择性聚类集成技术挑选出部分优异的基聚类器。最后采用一致性集成技术融合这些基聚类器,获得一个高可靠度的选择性聚类集成结果。将该方法应用于DIPS软件数据集与松塔水电站坝址区结构面勘察中,检验了该方法的可行性与有效性。研究结果表明:该方法聚类效果显著优于常见聚类算法,聚类结果客观合理,不仅能有效标识出噪点与孤值,还克服了单个模型易过分割或欠分割的不足。该研究成果对准确确定结构面优势组具有一定的工程价值。 展开更多
关键词 岩体结构面 优势产状 集成 具有噪声基于密度(dbscan) 轮廓系数
在线阅读 下载PDF
基于DBSCAN算法的树木分割与应用 被引量:1
20
作者 尤磊 邹畅 宋新宇 《信阳师范学院学报(自然科学版)》 CAS 2024年第1期106-112,共7页
为快速准确地提取地面三维激光扫描仪获取林分点云中的单株树木点云,提出一种基于密度的抗噪空间聚类(Density-Based Spatial Clustering of Application with Noise,DBSCAN)的树木分割算法。首先采用高斯滤波对林分点云去噪,在林分点... 为快速准确地提取地面三维激光扫描仪获取林分点云中的单株树木点云,提出一种基于密度的抗噪空间聚类(Density-Based Spatial Clustering of Application with Noise,DBSCAN)的树木分割算法。首先采用高斯滤波对林分点云去噪,在林分点云归一化的基础上对林分点云垂直分段,然后采用DBSCAN算法垂直分段聚类,再计算每个垂直分段中每个簇的中心点,根据簇中心点间的距离判定簇间的相邻关系,并由此匹配树干段点云,最后采用RANSAC(Random Sample Consensus)算法对树干段点云拟合直线,并根据点与拟合直线间的距离判定点的归属以实现树木分割。在郁闭度分别为中与高的林分中,所提算法的调和值F范围分别为0.88~0.99与0.72~0.74,基于距离判别的树木分割算法的F范围分别为0.84~0.90与0.73~0.79。所提算法在不同郁闭度的林分点云中均能有效分割单株树木点云,特别是在郁闭度为中的林分中有较好表现,可实现对林分点云的精确树木分割。 展开更多
关键词 激光雷达 树木分割 树干检测 基于密度的抗噪空间(dbscan)
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部