期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
基于密度噪声应用空间聚类算法的机载激光雷达建筑物点云提取与单体化 被引量:16
1
作者 吕富强 唐诗华 +1 位作者 何广焕 蒙金龙 《科学技术与工程》 北大核心 2022年第9期3446-3452,共7页
针对机载激光雷达建筑物点云提取过程中自动化提取困难,以及提取后的建筑物单体化过程烦琐等问题,提出一种基于密度噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的机载雷达建筑物点云提... 针对机载激光雷达建筑物点云提取过程中自动化提取困难,以及提取后的建筑物单体化过程烦琐等问题,提出一种基于密度噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的机载雷达建筑物点云提取与单体化的方法。该方法对预处理后的点云数据基于DBSCAN算法进行去噪与初步的提取,通过三维密度聚类,将建筑物的点云进行提取与自动单体化。根据建筑物点云密度的特点,进行二维的密度聚类,结合数字正射影像图(digital orthophoto map,DOM)进行点云分割。最后将处理后的点云数据进行优化处理,并将建筑物单体化簇类进行提取,得到单体化建筑物点云。结果表明:提取的建筑物点云数量正确率为97.36%,轮廓边长的中误差为0.077,可以有效地提取出建筑物点云并将其单体化。 展开更多
关键词 机载激光雷达 建筑物点云 基于密度噪声应用空间(dbscan) 密度 点云提取 单体化
在线阅读 下载PDF
基于密度的面板数据聚类分析 被引量:7
2
作者 杨娟 谢远涛 《统计与信息论坛》 CSSCI 2014年第2期23-28,共6页
研究面板数据聚类问题过程中,在相似性度量上,用Logistic回归模型构造相似系数和非对称相似矩阵。在聚类算法上,目前的聚类算法只适用于对称的相似矩阵。在非对称相似矩阵的聚类算法上,采用最佳优先搜索和轮廓系数,改进DBSCAN聚类方法,... 研究面板数据聚类问题过程中,在相似性度量上,用Logistic回归模型构造相似系数和非对称相似矩阵。在聚类算法上,目前的聚类算法只适用于对称的相似矩阵。在非对称相似矩阵的聚类算法上,采用最佳优先搜索和轮廓系数,改进DBSCAN聚类方法,提出BF—DBSCAN方法。通过实例分析,比较了BF—DBSCAN和DBSCAN方法的聚类结果,以及不同参数设置对BF—DBSCAN聚类结果的影响,验证了该方法的有效性和实用性。 展开更多
关键词 面板数据 LOGISTIC回归模型 基于密度应用噪声空间 最佳优先搜索 轮廓系数
在线阅读 下载PDF
基于毫米波雷达的近邻目标聚类和跟踪
3
作者 张春杰 赵佳琦 陈奇 《应用科技》 CAS 2024年第5期219-227,共9页
为解决毫米波雷达在对多目标跟踪时目标近邻聚类失败导致的目标数目低估和跟踪精度下降问题,提出一种基于概率假设密度(probability hypothesis density,PHD)滤波器的量测集联合划分方法。利用带噪声密度空间聚类(density based spatial... 为解决毫米波雷达在对多目标跟踪时目标近邻聚类失败导致的目标数目低估和跟踪精度下降问题,提出一种基于概率假设密度(probability hypothesis density,PHD)滤波器的量测集联合划分方法。利用带噪声密度空间聚类(density based spatial clustering of applications with noise,DBSCAN)算法对采集到的量测集进行初步划分。通过PHD滤波器的预测值判断初步划分的点云簇是否存在重叠簇。针对重叠簇,利用滤波器预测值改进高斯混合模型(Gaussian mixed model,GMM)聚类算法并进行子划分。在仿真和实际环境中进行算法测试,仿真结果表明,所提算法能正确划分并跟踪近邻的目标,相比其他算法具有更好的跟踪精度。实测结果进一步验证了该算法能够成功识别近邻目标数量并跟踪,具有一定的工程实践意义。 展开更多
关键词 毫米波雷达 扩展目标 多目标 概率假设密度 噪声密度空间 联合划分 近邻目标 高斯混合模型
在线阅读 下载PDF
聚类分析技术在CRM中的应用研究
4
作者 王海燕 李晓玲 《电子世界》 2015年第18期186-187,共2页
近年来CRM已经被越来越多的企业所重视,管理者也都深深的意识到了客户关系对企业发展的重要性。而CRM的核心是客户理解,在充分理解客户的基础上做出正确的决策,实现利润最大化,实现客户体验最优化。本文将数据挖掘应用到客户关系管理中... 近年来CRM已经被越来越多的企业所重视,管理者也都深深的意识到了客户关系对企业发展的重要性。而CRM的核心是客户理解,在充分理解客户的基础上做出正确的决策,实现利润最大化,实现客户体验最优化。本文将数据挖掘应用到客户关系管理中,利用基于密度的聚类方法DBSCAN算法来对进客户理解。所用数据为某4s店的客户消费记录,通过分群来总结各个客户群的特征,继而制定具有针对性的策略。 展开更多
关键词 客户理解 分析 客户关系管理 具有噪声应用基于密度空间 数据挖掘
在线阅读 下载PDF
基于传递熵密度聚类的用户窃电识别方法 被引量:17
5
作者 刘康 李彬 +4 位作者 薛阳 杨艺宁 徐英辉 刘爱国 苏盛 《中国电机工程学报》 EI CSCD 北大核心 2022年第20期7535-7545,共11页
在配电线路/台区中,接入用户的用电量与线损电量间存在因果关系,正常用户电量变化对线损电量的影响有限,而窃电用户的用电量对线损电量的影响异于正常用户。传递熵能衡量变量间的信息传递,是评价因果性的重要指标。该文提出基于传递熵... 在配电线路/台区中,接入用户的用电量与线损电量间存在因果关系,正常用户电量变化对线损电量的影响有限,而窃电用户的用电量对线损电量的影响异于正常用户。传递熵能衡量变量间的信息传递,是评价因果性的重要指标。该文提出基于传递熵密度聚类的用户窃电识别方法。首先运用传递熵指向性筛选出对线路/台区线损电量因果关联较强的用户;然后构建其与线损电量的传递熵模型,计算不同时长的用户用电量对线损电量的传递熵值,以衡量其信息传递量;再结合密度聚类算法,将传递熵曲线偏离正常用户类簇的识别为与线损有强因果性的窃电用户。最后,基于已查证的高损台区和长距离配电线路实际数据,验证所提方法的有效性。 展开更多
关键词 窃电 传递熵 基于密度噪声应用空间 因果关联 线损电量
在线阅读 下载PDF
一种基于目标点云分布特性的动态聚类算法
6
作者 李彩虹 何晨阳 +1 位作者 高锋 陈佳欣 《汽车安全与节能学报》 CAS CSCD 北大核心 2024年第2期261-267,共7页
激光雷达在自动驾驶系统的目标检测任务中发挥着重要作用,但其扫描机理会使得点云分布不均匀,常规聚类算法由于参数固定会导致较多的错误聚类。为解决该问题,该文以椭圆形状作为邻域空间,设计基于采样点位置的邻域自适应调整策略,提出... 激光雷达在自动驾驶系统的目标检测任务中发挥着重要作用,但其扫描机理会使得点云分布不均匀,常规聚类算法由于参数固定会导致较多的错误聚类。为解决该问题,该文以椭圆形状作为邻域空间,设计基于采样点位置的邻域自适应调整策略,提出一种基于目标点云分布特性的动态聚类算法。通过正确聚类、过聚类等综合结果评估算法的性能,在KITTI数据集上进行了数值分析得到算法参数,并在校园环境中进行了实车对比实验。结果表明:所提算法能减少基于密度的噪声应用空间聚类(DBSCAN)中固定邻域所造成的70.60%过聚类、49.76%欠聚类等错误结果,从而有效提高算法的综合聚类性能。 展开更多
关键词 智能汽车 目标检测 激光雷达 点云 KITTI数据集 基于密度噪声应用空间(dbscan)
在线阅读 下载PDF
基于密度聚类算法的电力通信监测分析 被引量:8
7
作者 张明明 刘文盼 +1 位作者 宋浒 夏飞 《自动化仪表》 CAS 2022年第11期73-78,共6页
为解决传统基于密度的噪声应用空间聚类(DBSCAN)算法对输入参数设置敏感,以及传统的边缘计算框架计算成本高、计算时间过长等问题,创新性地提出了一种单遍权重K-means(SPWK)聚类算法。构建了电力通信网络故障及入侵监测模型,并将深度强... 为解决传统基于密度的噪声应用空间聚类(DBSCAN)算法对输入参数设置敏感,以及传统的边缘计算框架计算成本高、计算时间过长等问题,创新性地提出了一种单遍权重K-means(SPWK)聚类算法。构建了电力通信网络故障及入侵监测模型,并将深度强化学习技术与边缘计算相结合,以降低计算成本和计算时长。仿真试验结果表明:SPWK聚类算法的迭代次数更少,平均执行时间以及总聚类时间分别低于其他算法67.5%、37.5%,加速比高出76.4%以上,聚类效率更高;边缘计算优化方法的服务器占用时间以及计算等待时间分别低于其他算法70.4%以上和79.2%以上,性能更优;电力通信监测模型对异常数据的平均识别准确率高出其他算法23.86%以上,入侵检测率高出其他算法4.8%以上,误报率降低65.4%以上,具备优异的检测性能。综上所述,所提故障及入侵监测模型以及边缘计算优化方法的性能均优于其他流行方法,适合在电力通信监测研究中推广使用。 展开更多
关键词 基于密度噪声应用空间算法 单遍权重K-means算法 边缘计算 电力通信监测 故障检测 入侵检测
在线阅读 下载PDF
基于集成学习的物联网通信数据快速分类研究
8
作者 杨瑞丽 王俊仃 邱秀荣 《通信电源技术》 2025年第5期4-6,共3页
物联网设备持续产出的数据中会掺杂部分异常数据,导致物联网通信数据分类的质量与效率下降。因此,提出一种基于集成学习的物联网通信数据快速分类方法。从物联网设备收集通信数据,利用孤立森林算法确定物联网通信数据样本的异常分值,并... 物联网设备持续产出的数据中会掺杂部分异常数据,导致物联网通信数据分类的质量与效率下降。因此,提出一种基于集成学习的物联网通信数据快速分类方法。从物联网设备收集通信数据,利用孤立森林算法确定物联网通信数据样本的异常分值,并去除异常分值较高的数据,通过基于密度的带噪声应用空间聚类(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)算法整合去除异常后的数据,结合集成学习算法实现物联网通信数据快速分类。实验结果表明,所提方法的物联网通信数据分类准确率始终在97.2%以上,物联网通信数据分类时间均值约为1.55 s,具有良好的应用潜力。 展开更多
关键词 集成学习 物联网通信 数据分 基于密度的带噪声应用空间(dbscan)
在线阅读 下载PDF
基于DBSCAN二次聚类的配电网负荷缺失数据修补 被引量:4
9
作者 蔡文斌 程晓磊 +1 位作者 王鹏 王渊 《电气技术》 2021年第12期27-33,共7页
电力负荷属于具有时间序列特性的数据,依据数据固有的规律性和波动性特征,修补由于各种因素而缺失的负荷数据,可为电力系统研究和实验结果的有效性和可预测性奠定基础。本文首先提出基于密度的含噪声应用空间聚类(DBSCAN)二次聚类的方法... 电力负荷属于具有时间序列特性的数据,依据数据固有的规律性和波动性特征,修补由于各种因素而缺失的负荷数据,可为电力系统研究和实验结果的有效性和可预测性奠定基础。本文首先提出基于密度的含噪声应用空间聚类(DBSCAN)二次聚类的方法;其次,提出针对配电网负荷数据的负荷属性相似度,在此基础上进一步提出负荷记录综合相似度;然后,依据DBSCAN二次聚类方法的负荷类别结果和所得负荷记录综合相似度,匹配相似度最大的数据类别,并依据该类别的记录信息对所缺失数据进行修补;最后,采用算例分析证明所提方法的有效性和正确性。 展开更多
关键词 基于密度的含噪声应用空间(dbscan) 电力负荷 数据相似度 数据修补
在线阅读 下载PDF
基于密度聚类的低压台区归属关系及相位识别方法 被引量:1
10
作者 闫东辉 《南方能源建设》 2023年第5期149-156,共8页
[目的]供电部门记录的正确的拓扑信息有助于工作人员监测电网信息,分析故障,优化电网运行以满足低压配电台区精益化、智能化管理的需要。目前,各式新型用电设备及用户的加入使低压配电网络结构呈现出持续变化的特征,线路维护成本被大大... [目的]供电部门记录的正确的拓扑信息有助于工作人员监测电网信息,分析故障,优化电网运行以满足低压配电台区精益化、智能化管理的需要。目前,各式新型用电设备及用户的加入使低压配电网络结构呈现出持续变化的特征,线路维护成本被大大提高。[方法]为此,提出基于密度聚类的低压台区归属关系识别方法。首先,提取智能电表有效电压数据生成高维时序电压矩阵;其次,采用t分布随机近邻嵌入方法(t-distributed Stochastic Neighbor Embedding,t-SNE)对高维时序电压数据进行特征提取与降维;然后,应用基于数据密度的噪声应用空间聚类方法(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)对降维后的数据进行聚类分析,实现低压用户台区归属信息的识别;最后,对海南省三亚市某台区实际数据进行分析,并将所提方法与其他主流的拓扑识别算法进行对比。[结果]分析结果表明所提方法能够达到95%以上的台区识别准确率,高于目前其他主流的拓扑信息识别方法。[结论]文章中的方法在解决此类问题上具有有效性与优势性,可以为实际工程应用提供参考,为低压台区拓扑信息识别领域提供不一样的研究思路。 展开更多
关键词 低压台区 电压数据信息 t分布随机近邻嵌入方法 基于数据密度的噪声应用空间方法 台区归属关系识别 相位识别
在线阅读 下载PDF
基于区域比例的聚类方法 被引量:2
11
作者 李伟雄 谭建豪 王贵山 《计算机工程与应用》 CSCD 北大核心 2011年第8期143-145,共3页
为了改善DBSCAN参数敏感性和对密度分布不均数据对象聚类质量不高的问题,提出了一种基于DBSCAN算法的改进聚类方法。算法使用K最近邻的均值距离度量密度,中心点选取当前密度最大点,并以中心点为核心点扩展种子队列,直至由给定的密度比... 为了改善DBSCAN参数敏感性和对密度分布不均数据对象聚类质量不高的问题,提出了一种基于DBSCAN算法的改进聚类方法。算法使用K最近邻的均值距离度量密度,中心点选取当前密度最大点,并以中心点为核心点扩展种子队列,直至由给定的密度比例因子所决定的密度边缘。为了改善聚类质量,提出了候选核心点,并使用给定的半径比例因子发现核心点。在实验中,利用数据集对该算法进行了测试,测试结果证明了该改进算法的参数鲁棒性,和在聚类密度分布不均数据集时的较好性能。 展开更多
关键词 基于密度的带噪声应用空间方法(dbscan) 算法 密度 区域比例
在线阅读 下载PDF
基于聚类和局部线性回归的初至波自动拾取算法 被引量:3
12
作者 高磊 罗关凤 +1 位作者 刘荡 闵帆 《计算机应用》 CSCD 北大核心 2022年第2期655-662,共8页
初至波拾取是地震数据处理中的关键步骤,会直接影响动校正、静校正和速度分析等的精度。目前,现有的算法受到背景噪声和复杂近地表条件的影响时拾取精度会降低。基于此,提出基于聚类和局部线性回归的初至波自动拾取算法(FPCL)。该算法... 初至波拾取是地震数据处理中的关键步骤,会直接影响动校正、静校正和速度分析等的精度。目前,现有的算法受到背景噪声和复杂近地表条件的影响时拾取精度会降低。基于此,提出基于聚类和局部线性回归的初至波自动拾取算法(FPCL)。该算法由预拾取和微调两个阶段来实现。预拾取阶段先基于k均值(k-means)技术找到初至波簇,再利用基于密度的噪声应用空间聚类(DBSCAN)技术在初至波簇中进行拾取。微调阶段通过局部线性回归补齐缺失值,再利用能量比值最小化技术调整错误值。在两个地震数据集上,将FPCL与改进的能量比(IMER)法相比,准确率分别提升了4.00个百分点和3.50个百分点;与互相关技术(CCT)相比,准确率分别提升了38.00个百分点和10.25个百分点;与基于模糊C均值聚类的微震数据自动时间拾取算法(APF)相比,准确率分别提升了34.50个百分点和3.50个百分点;与基于两阶段优化的初至波自动拾取算法(FPTO)相比,准确率分别提升了5.50个百分点和16.25个百分点。上述实验结果表明FPCL更准确。 展开更多
关键词 初至波拾取 K均值 基于密度噪声应用空间 局部线性回归 能量比值
在线阅读 下载PDF
S-DBSCAN:一种基于DBSCAN发现高密度簇的算法 被引量:5
13
作者 孙鹏 韩承德 曾涛 《高技术通讯》 CAS CSCD 北大核心 2012年第6期589-595,共7页
针对基于密度的带有噪声的空间聚类(DBSCAN)算法用于交互式数据挖掘时用户经常调整算法参数以发现感兴趣的知识以及数据集相对稳定的特点,提出了一种基于DBSCAN发现高密度簇的算法—S-DBSCAN算法,确定了需调整的算法参数——对象的... 针对基于密度的带有噪声的空间聚类(DBSCAN)算法用于交互式数据挖掘时用户经常调整算法参数以发现感兴趣的知识以及数据集相对稳定的特点,提出了一种基于DBSCAN发现高密度簇的算法—S-DBSCAN算法,确定了需调整的算法参数——对象的邻域范围8(Eps)和满足核心对象条件的£邻域内最小对象个数MinPts,阐述了参数8与MinPts的3种适合S-DBSCAN算法的变化情况,并给出了相应的证明,同时分析了算法的时间复杂度。在对真实和合成数据集的测试中,S-DBSCAN算法相比DBSCAN算法具有较好的效率。 展开更多
关键词 基于密度的带噪声空间(dbscan) S-dbscan 密度 数可变
在线阅读 下载PDF
使用DBSCAN的FCM神经网络分类器 被引量:5
14
作者 张晓倩 杨波 +1 位作者 王琳 梁志锋 《模式识别与人工智能》 EI CSCD 北大核心 2016年第2期185-192,共8页
针对浮动质心法(FCM)在实现过程采用的K-means算法不易发现任意形状簇及对离群点敏感等缺陷,提出使用具有噪声的基于密度的聚类算法(DBSCAN)改进FCM神经网络分类器的方法.DBSCAN将离群点看作无法处理的点,并能发现任意形状的簇,将分区... 针对浮动质心法(FCM)在实现过程采用的K-means算法不易发现任意形状簇及对离群点敏感等缺陷,提出使用具有噪声的基于密度的聚类算法(DBSCAN)改进FCM神经网络分类器的方法.DBSCAN将离群点看作无法处理的点,并能发现任意形状的簇,将分区空间中的染色点划分成若干个更准确的分区.此外,定义优化目标函数,并用粒子群优化算法优化神经网络的各个参数,获得最优的分类模型.在UCI数据库上的对比实验表明,改进后的FCM方法在分类精度、鲁棒性和运行时间方面均优于原有FCM. 展开更多
关键词 神经网络 浮动质心法(FCM) 分区空间 具有噪声基于密度算法(dbscan)
在线阅读 下载PDF
基于聚类和流量传播图的P2P流量识别方法 被引量:3
15
作者 苏阳阳 孙冬璞 +1 位作者 李丹丹 孙广路 《计算机应用研究》 CSCD 北大核心 2019年第11期3448-3451,3455,共5页
为有效监管网络,快速精确识别P2P流量,通过分析P2P网络流量中节点与节点、节点与链路之间的交互和行为特征,将聚类方法与流量传播图方法相结合,提出了一种基于网络行为特征的P2P流量识别方法。该方法首先通过采集网络流的包级和流级统... 为有效监管网络,快速精确识别P2P流量,通过分析P2P网络流量中节点与节点、节点与链路之间的交互和行为特征,将聚类方法与流量传播图方法相结合,提出了一种基于网络行为特征的P2P流量识别方法。该方法首先通过采集网络流的包级和流级统计特征对不同种类的网络应用的流量进行聚类,然后利用流量传播图对P2P流量进行识别。实验结果表明,提出的方法在骨干网络数据上能够有效识别P2P网络应用流量,F 1-measure达到95%以上。 展开更多
关键词 P2P流量识别 流量行为特征 流量传播图 基于密度噪声空间算法
在线阅读 下载PDF
基于改进DBSCAN的船舶会遇识别模型
16
作者 陈蜀喆 龚彪 +1 位作者 康杰 孙俊博 《上海海事大学学报》 北大核心 2024年第1期1-9,共9页
为解决大数据下船舶会遇识别算法效率不高且存在误判等问题,提出一种融合国际海上避碰规则(International Regulations for Preventing Collisions at Sea,COLREGs)的带噪声的基于密度的空间聚类(density-based spatial clustering of a... 为解决大数据下船舶会遇识别算法效率不高且存在误判等问题,提出一种融合国际海上避碰规则(International Regulations for Preventing Collisions at Sea,COLREGs)的带噪声的基于密度的空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法,建立船舶会遇识别模型。在DBSCAN算法对邻域内的船舶数量进行统计时,计算船舶间的最近会遇距离(distance to closest point of approach,DCPA)和最近会遇时间(time to closest point of approach,TCPA),初步筛选邻域内的噪声点;基于模糊综合评价模型计算船舶会遇风险,对邻域内的船舶进行二次筛选,实现船舶会遇态势的提取。结果表明:改进后的DBSCAN算法过滤掉传统DBSCAN算法识别到的非会遇局面,并且在同一会遇局面下的船舶数量均保持在4艘以内;输出的会遇船舶风险演变趋势对实际水域内高风险船舶的监控适用性较好,能有效辅助船舶避碰。所提识别模型对保障航行安全和提高海事监管效率具有重要意义。 展开更多
关键词 噪声基于密度空间(dbscan) 国际海上避碰规则(COLREGs) 模糊综合评价 船舶会遇 海事监管
在线阅读 下载PDF
考虑多维特征的船舶轨迹分层聚类算法 被引量:1
17
作者 苏俊杰 兰培真 《上海海事大学学报》 北大核心 2022年第4期30-36,共7页
为准确聚类复杂的船舶轨迹和辨识隐蔽轨迹簇,提出一种考虑多维特征的船舶轨迹分层聚类算法。用核心萤火虫算法(core firefly algorithm,CFA)解决具有噪声的基于密度的空间聚类(density-based spatial clustering of applications with n... 为准确聚类复杂的船舶轨迹和辨识隐蔽轨迹簇,提出一种考虑多维特征的船舶轨迹分层聚类算法。用核心萤火虫算法(core firefly algorithm,CFA)解决具有噪声的基于密度的空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的邻域查询冗余和参数敏感问题,并在传统船舶轨迹聚类特征的基础上引入水域环境、轨迹线型和时隙特征来分层建立轨迹相似性度量指标,最终实现轨迹的逐层递进聚类。以厦门港及其附近水域的AIS数据验证算法的有效性,检验结果表明:船舶轨迹由算法聚类为9簇;簇内动态时间规整(dynamic time warping,DTW)距离均值为5.199,簇间DTW距离均值为18.032;聚类结果符合实际的船舶交通流情况,聚类准确率为91.50%。可见,提出的算法相比其他常用的轨迹聚类算法能更有效地辨识轨迹地理分布和船舶运动特征的异同,更容易发现隐蔽的轨迹簇。由提出的算法聚类的同簇轨迹,其船舶运动特性更相似,聚类结果可为船舶交通流特性分析及船舶行为模式识别等提供典型的轨迹样本。 展开更多
关键词 船舶轨迹 相似性度量 层次 核心萤火虫算法(CFA) 具有噪声基于密度空间(dbscan)
在线阅读 下载PDF
利用DBSCAN和概率密度估计的欠定盲源分离混合矩阵估计 被引量:4
18
作者 张宇 杨淇善 贾懋珅 《信号处理》 CSCD 北大核心 2023年第4期708-718,共11页
针对欠定盲源分离中混合矩阵估计精度不佳的问题,本文提出了一种结合带噪声的基于密度的空间聚类(combining density-based spatial clustering of application with noise,DBSCAN)和概率密度估计的混合矩阵估计算法。首先,通过向量转... 针对欠定盲源分离中混合矩阵估计精度不佳的问题,本文提出了一种结合带噪声的基于密度的空间聚类(combining density-based spatial clustering of application with noise,DBSCAN)和概率密度估计的混合矩阵估计算法。首先,通过向量转换方式获得单声源时频点检测准则,并基于此准则从混合信号中检测出单声源点。其次,利用基于密度的空间聚类算法对单声源点进行聚类,由此估计出声源个数以及各类别所属的单声源点。再次,利用概率密度估计获得各类别的聚类中心,并构成混合矩阵。所提混合矩阵估计方法不需要提前设定声源个数,并且避免了由于数据分布不均所造成的聚类效果差的问题。最后,采用压缩感知技术实现源信号恢复,从而从混合信号中分离出各个声源信号。实验结果表明,本文所提的混合矩阵估计方法在声源个数未知的情况下,能够准确估计出混合矩阵;并且分离出的信号具有较高的质量。 展开更多
关键词 噪声基于密度空间 概率密度估计 混合矩阵估计 欠定盲源分离
在线阅读 下载PDF
基于聚类的超密集网络干扰抑制方法
19
作者 姜静 侯欢欢 《西安邮电大学学报》 2019年第6期1-5,共5页
针对超密集网络系统提出了一种改进的基于密度噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的干扰抑制方法。基站利用附加判断门限条件而改进DBSCAN聚类算法,并对小区里的用户进行分组,... 针对超密集网络系统提出了一种改进的基于密度噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的干扰抑制方法。基站利用附加判断门限条件而改进DBSCAN聚类算法,并对小区里的用户进行分组,将具有相似信道特性的用户聚成一组,使不同分组用户之间的信道相关性较低。再利用比例公平调度选出每组中比例公平系数最高的用户进行传输,调度后的多个用户的空间特性不同的,从而降低空间干扰起到干扰抑制的效果。仿真结果表明,与其他相关2种方法比较,改进方法可有效地降低空间干扰,提高系统吞吐量。 展开更多
关键词 超密集网络 密度噪声应用空间算法 用户分组 干扰抑制
在线阅读 下载PDF
基于LLE-DBSCAN-SMOTE数据处理的隧洞岩爆预测
20
作者 范成强 夏元友 +1 位作者 张宏伟 黄建 《中国安全科学学报》 CSCD 北大核心 2024年第12期140-148,共9页
为解决岩爆预测中预测指标关联以及原始数据存在离群点与数据不平衡等问题,提出基于局部线性嵌入(LLE)-基于密度的带噪声应用空间聚类(DBSCAN)-合成少数类过采样(SMOTE)数据处理的岩爆预测方法。首先,选取围岩最大切向应力σ_(θ)、岩... 为解决岩爆预测中预测指标关联以及原始数据存在离群点与数据不平衡等问题,提出基于局部线性嵌入(LLE)-基于密度的带噪声应用空间聚类(DBSCAN)-合成少数类过采样(SMOTE)数据处理的岩爆预测方法。首先,选取围岩最大切向应力σ_(θ)、岩石单轴抗压强度σ_(c)、岩石单轴抗拉强度σ_(t)、弹性应变能指数W_(et)、脆性系数σ_(c)/σ_(t)、应力系数σ_(θ)/σ_(c)和表征围岩应力梯度的应力集度值β构建岩爆预测指标体系;其次,采用LLE算法进行数据降维处理以消除指标间的交叉关联影响,引入DBSCAN算法去除数据离群点;然后,引入SMOTE技术进行数据平衡化;最后,分别采用决策树(DT)、随机森林(RF)与梯度提升树(GBDT)算法构建3类岩爆预测模型,对比分析数据处理前后数据训练模型的预测精度,并通过江边水电站引水隧洞实测岩爆数据进行工程验证。结果表明:预测指标由原始数据的7维降至4维,以及采用分级离群值处理后的3类算法模型的预测准确率皆为同类模型中最高,江边水电站工程岩爆预测验证了数据处理后的模型预测准确率明显高于基于原始岩爆数据建立的同类模型。 展开更多
关键词 局部线性嵌入(LLE) 基于密度的带噪声应用空间(dbscan) 合成少数过采样(SMOTE) 数据处理 岩爆预测
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部