本文提出了一种基于密度聚类的三支K-Means算法。针对传统的K-Means算法在选取初始聚类中心时往往依赖于随机选择和无法处理不确定性数据对象的问题,本文采用基于密度聚类算法优化初始聚类中心的选择,并优化了截断距离的选取,最后使用...本文提出了一种基于密度聚类的三支K-Means算法。针对传统的K-Means算法在选取初始聚类中心时往往依赖于随机选择和无法处理不确定性数据对象的问题,本文采用基于密度聚类算法优化初始聚类中心的选择,并优化了截断距离的选取,最后使用三支决策的方法对聚类结果进行处理。实验结果表明,与传统的K-Means算法相比,改进的K-Means算法在聚类中表现出更高的聚类精度和稳定性。This paper proposes a three-branch K-Means algorithm based on density clustering. In view of the problem that the traditional K-Means algorithm often relies on random selection and cannot handle uncertain data objects when selecting initial clustering centers, this paper uses a density-based clustering algorithm to optimize the selection of initial clustering centers, and optimizes the selection of truncation distance. Finally, a three-branch decision method is used to process the clustering results. The experimental results show that the improved K-Means algorithm exhibits higher clustering accuracy and stability in clustering compared to the traditional K-Means algorithm.展开更多
为提升时间序列的聚类精度,提出一种融合优化可调Q因子小波变换的改进密度峰值聚类(improved density peaks clustering based on optimal tunable Q-factor wavelet transform,OTQWT-IDPC)算法,该算法利用可调Q因子小波变换的能量优化...为提升时间序列的聚类精度,提出一种融合优化可调Q因子小波变换的改进密度峰值聚类(improved density peaks clustering based on optimal tunable Q-factor wavelet transform,OTQWT-IDPC)算法,该算法利用可调Q因子小波变换的能量优化选择策略及改进粒子群优化算法确定的最佳Q因子分解时序信号,通过最优特征子带的能量、均值、标准差和模糊熵构建特征子空间,并采用主成分分析降低特征维度,以减少特征冗余。同时,考虑到距离较远而周围密集程度较大的K近邻样本对局部密度的贡献率,引入权重系数及K近邻重新定义DPC的局部密度,并利用共享最近邻描述样本间的相似性。在BONN癫痫脑电信号和CWRU滚动轴承数据集上进行对比实验,结果表明,该算法的聚类精度分别为95%、94%,且Jacarrd、FMI和F_(1)值指标均优于其他对比算法,证明了OTQWT-IDPC算法的有效性。展开更多
文摘本文提出了一种基于密度聚类的三支K-Means算法。针对传统的K-Means算法在选取初始聚类中心时往往依赖于随机选择和无法处理不确定性数据对象的问题,本文采用基于密度聚类算法优化初始聚类中心的选择,并优化了截断距离的选取,最后使用三支决策的方法对聚类结果进行处理。实验结果表明,与传统的K-Means算法相比,改进的K-Means算法在聚类中表现出更高的聚类精度和稳定性。This paper proposes a three-branch K-Means algorithm based on density clustering. In view of the problem that the traditional K-Means algorithm often relies on random selection and cannot handle uncertain data objects when selecting initial clustering centers, this paper uses a density-based clustering algorithm to optimize the selection of initial clustering centers, and optimizes the selection of truncation distance. Finally, a three-branch decision method is used to process the clustering results. The experimental results show that the improved K-Means algorithm exhibits higher clustering accuracy and stability in clustering compared to the traditional K-Means algorithm.
文摘为提升时间序列的聚类精度,提出一种融合优化可调Q因子小波变换的改进密度峰值聚类(improved density peaks clustering based on optimal tunable Q-factor wavelet transform,OTQWT-IDPC)算法,该算法利用可调Q因子小波变换的能量优化选择策略及改进粒子群优化算法确定的最佳Q因子分解时序信号,通过最优特征子带的能量、均值、标准差和模糊熵构建特征子空间,并采用主成分分析降低特征维度,以减少特征冗余。同时,考虑到距离较远而周围密集程度较大的K近邻样本对局部密度的贡献率,引入权重系数及K近邻重新定义DPC的局部密度,并利用共享最近邻描述样本间的相似性。在BONN癫痫脑电信号和CWRU滚动轴承数据集上进行对比实验,结果表明,该算法的聚类精度分别为95%、94%,且Jacarrd、FMI和F_(1)值指标均优于其他对比算法,证明了OTQWT-IDPC算法的有效性。