期刊文献+
共找到845篇文章
< 1 2 43 >
每页显示 20 50 100
基于密度聚类的三支K-Means聚类算法
1
作者 李志聪 晏啸昊 《计算机科学与应用》 2025年第1期246-255,共10页
本文提出了一种基于密度聚类的三支K-Means算法。针对传统的K-Means算法在选取初始聚类中心时往往依赖于随机选择和无法处理不确定性数据对象的问题,本文采用基于密度聚类算法优化初始聚类中心的选择,并优化了截断距离的选取,最后使用... 本文提出了一种基于密度聚类的三支K-Means算法。针对传统的K-Means算法在选取初始聚类中心时往往依赖于随机选择和无法处理不确定性数据对象的问题,本文采用基于密度聚类算法优化初始聚类中心的选择,并优化了截断距离的选取,最后使用三支决策的方法对聚类结果进行处理。实验结果表明,与传统的K-Means算法相比,改进的K-Means算法在聚类中表现出更高的聚类精度和稳定性。This paper proposes a three-branch K-Means algorithm based on density clustering. In view of the problem that the traditional K-Means algorithm often relies on random selection and cannot handle uncertain data objects when selecting initial clustering centers, this paper uses a density-based clustering algorithm to optimize the selection of initial clustering centers, and optimizes the selection of truncation distance. Finally, a three-branch decision method is used to process the clustering results. The experimental results show that the improved K-Means algorithm exhibits higher clustering accuracy and stability in clustering compared to the traditional K-Means algorithm. 展开更多
关键词 K-MEANS算法 密度 三支决策
在线阅读 下载PDF
基于反向最近邻的密度估计聚类算法
2
作者 许梅梅 侯新民 《计算机工程与应用》 北大核心 2025年第1期165-173,共9页
基于相互最近邻的密度峰聚类算法(DenMune)通过相互最近邻计算数据点的局部密度,是一种有效的聚类手段。但该算法存在构建聚类骨架不合理的问题,在分配弱点时采用硬投票策略,易产生错误。因此提出一种新的基于反向最近邻的密度估计聚类... 基于相互最近邻的密度峰聚类算法(DenMune)通过相互最近邻计算数据点的局部密度,是一种有效的聚类手段。但该算法存在构建聚类骨架不合理的问题,在分配弱点时采用硬投票策略,易产生错误。因此提出一种新的基于反向最近邻的密度估计聚类算法(RNN-DEC)。该算法引入反向最近邻来计算数据点的局部密度,将数据点分成强点、弱点和噪声点。使用强点构建聚类算法的骨架,通过软投票的方式将弱点分配到与其相似度最高的簇中去。提出了一种基于反向最近邻的簇融合算法,将相似度高的子簇融合,得到最终的聚类结果。实验结果表明,在一些合成数据集和UCI真实数据集上,相比较于其他经典算法,该算法具有更好的聚类效果。 展开更多
关键词 反向最近邻 局部密度 密度算法 子簇融合
在线阅读 下载PDF
基于高斯分布的自适应密度峰值聚类算法
3
作者 李启文 王治和 +1 位作者 杜辉 鲁德鹏 《计算机工程》 北大核心 2025年第4期137-148,共12页
密度峰值聚类(DPC)算法可以发现任意形状的簇,对噪声具有鲁棒性,因此被广泛应用于各个领域。但DPC算法需要人工选取聚类中心,对于密度不均匀型数据集表现较差。为此,提出一种基于高斯分布的自适应密度峰值聚类算法。首先,计算局部密度... 密度峰值聚类(DPC)算法可以发现任意形状的簇,对噪声具有鲁棒性,因此被广泛应用于各个领域。但DPC算法需要人工选取聚类中心,对于密度不均匀型数据集表现较差。为此,提出一种基于高斯分布的自适应密度峰值聚类算法。首先,计算局部密度和相对距离的乘积θ_(i),通过Z-score标准化方法,将θ_(i)映射到符合高斯分布的二维空间中,利用高斯分布的标准偏差来自适应选取聚类中心,得到聚类中心集合;其次,将其余数据点分配到离其最近的聚类中心所在的簇中,得到初步划分结果;最后,设计缝合因子模型,计算簇间缝合系数,当缝合系数大于阈值时合并初步划分结果中最相似簇并更新相似度矩阵,直至完成合并得到最终结果。在人工数据集和真实数据集上的实验结果表明,与DBSCAN算法、DPC算法和ICKDC算法对比,所提算法的聚类准确度更高,聚类性能更佳。 展开更多
关键词 密度峰值算法 高斯分布 Z-score标准化 缝合因子 簇间相似度
在线阅读 下载PDF
基于航迹数据的改进DBSCAN聚类算法研究 被引量:1
4
作者 申正义 李平 +2 位作者 王洪林 赵迪 郭文琪 《空天预警研究学报》 CSCD 2024年第2期128-131,共4页
为研究模拟训练航迹数据聚类,针对基于密度的噪声应用空间聚类(DBSCAN)算法参数选取不精准、聚类准确度不高的问题,提出一种改进的DBSCAN聚类算法.首先,通过KNN算法计算邻域半径并得到用于DBSCAN聚类的初始化核心数据对象,实现粗聚类;其... 为研究模拟训练航迹数据聚类,针对基于密度的噪声应用空间聚类(DBSCAN)算法参数选取不精准、聚类准确度不高的问题,提出一种改进的DBSCAN聚类算法.首先,通过KNN算法计算邻域半径并得到用于DBSCAN聚类的初始化核心数据对象,实现粗聚类;其次,根据数据对象的特点,加入航向特征进行二次聚类,既解决了DBSCAN算法随机初始化核心点和参数选取难的问题,又加入能够反映数据方向的特征;最后,进行了仿真实验.实验结果表明,改进DBSCAN算法比传统DBSCAN算法具有更好的聚类效果. 展开更多
关键词 模拟训练 dbscan算法 二次 自适应参数选取 航迹数据
在线阅读 下载PDF
融合密度和划分的文本聚类算法
5
作者 刘龙 刘新 +1 位作者 蔡林杰 唐朝 《计算机与数字工程》 2024年第1期178-183,共6页
文档聚类是聚类的经典应用,它是将相似的文档归为同一类,可以有效地组织、摘要和导航文本信息,也可以用来提高分类效果。论文使用BERT模型处理文档向量化,将文档表示为高维向量。传统的密度聚类算法不适用于高维数据集,划分聚类算法中... 文档聚类是聚类的经典应用,它是将相似的文档归为同一类,可以有效地组织、摘要和导航文本信息,也可以用来提高分类效果。论文使用BERT模型处理文档向量化,将文档表示为高维向量。传统的密度聚类算法不适用于高维数据集,划分聚类算法中的K-均值算法可以有效地聚类文档,但是算法的性能非常依赖于初始中心点的选择。论文提出了一种新的融合密度和划分的文本聚类算法。首先,通过密度选择适当的聚类中心点集合,然后使用最远距离的想法逐渐选择初始类中心点,最后使用划分方法对数据集进行聚类。实验表明,该算法的聚类效果稳定,聚类效果良好。 展开更多
关键词 文档 BERT K-均值算法 密度 最远距离
在线阅读 下载PDF
基于DBSCAN算法的海量网络数据增量并行化聚类方法
6
作者 郑艳松 陶礼贵 《现代计算机》 2024年第24期97-102,共6页
传统的聚类算法在面对动态递增的数据时,需要重新运行整个聚类过程,耗时且效率低。为有效应对这一挑战,提出基于DBSCAN算法的海量网络数据增量并行化聚类方法。采用Chernoff bounds准则分区网络数据,确保均衡且具代表性。应用DBSCAN算... 传统的聚类算法在面对动态递增的数据时,需要重新运行整个聚类过程,耗时且效率低。为有效应对这一挑战,提出基于DBSCAN算法的海量网络数据增量并行化聚类方法。采用Chernoff bounds准则分区网络数据,确保均衡且具代表性。应用DBSCAN算法聚类,精准识别高密度区域,同时处理噪声数据,实现网络数据的初始化聚类。针对动态数据,设定增量合并原则,高效合并新数据与原始聚类,保持聚类结果实时更新。实验结果表明,所提出的方法具有较高的置信水平(不低于97%),并且在聚类时间复杂度上表现出色,成功实现了对海量网络数据的增量并行化精准快速聚类。 展开更多
关键词 dbscan算法 网络数据 数据增量 并行化 Chernoff bounds准则 增量合并规则
在线阅读 下载PDF
Greedy DBSCAN:一种针对多密度聚类的DBSCAN改进算法 被引量:45
7
作者 冯振华 钱雪忠 赵娜娜 《计算机应用研究》 CSCD 北大核心 2016年第9期2693-2696,2700,共5页
针对基于密度的DBSCAN算法对于输入参数敏感、无法聚类多密度数据集等问题,提出了一种贪心的DBSCAN改进算法(greedy DBSCAN)。算法仅需输入一个参数Min Pts,采用贪心策略自适应地寻找Eps半径参数进行簇发现,利用相对稠密度识别和判定噪... 针对基于密度的DBSCAN算法对于输入参数敏感、无法聚类多密度数据集等问题,提出了一种贪心的DBSCAN改进算法(greedy DBSCAN)。算法仅需输入一个参数Min Pts,采用贪心策略自适应地寻找Eps半径参数进行簇发现,利用相对稠密度识别和判定噪声数据,在随机寻找核对象过程中使用邻域查询方式提升算法效率,最终通过簇的合并产生最终的聚类结果。实验结果表明,改进后的算法能有效地分离噪声数据,识别多密度簇,聚类准确度较高。 展开更多
关键词 密度 贪心策略 相对稠密度 邻域查询 噪声数据 dbscan
在线阅读 下载PDF
基于类簇合并的无参数密度峰值聚类算法 被引量:1
8
作者 刘天娇 王胜景 袁永生 《现代电子技术》 北大核心 2024年第8期1-8,共8页
密度峰值聚类算法(DPC)通过决策图直观地找到类簇中心进而完成聚类,是一种简单高效的聚类算法。然而,DPC算法的截断距离和类簇中心都是人为确定的,受主观影响较大,具有不确定性。针对上述问题,提出一种基于类簇合并的无参数密度峰值聚... 密度峰值聚类算法(DPC)通过决策图直观地找到类簇中心进而完成聚类,是一种简单高效的聚类算法。然而,DPC算法的截断距离和类簇中心都是人为确定的,受主观影响较大,具有不确定性。针对上述问题,提出一种基于类簇合并的无参数密度峰值聚类算法(NDPCCM)。首先根据样本点两两之间的相似度的分布特征将其分为类内相似度和类间相似度两种类型,并利用类内相似度自动确定截断相似度,避免了人为设置参数;接着根据簇中心权值的下降趋势自动选择初始类簇中心,得到初始类簇;最后通过合并初始类簇对初步聚类结果进行优化,提高了聚类的准确性。在人工数据集和UCI真实数据集上,将所提算法与DPC、DBSCAN、K-means算法进行对比实验。结果表明所提算法无需输入参数就能够自动得到类簇,且聚类性能优于其他算法。 展开更多
关键词 分析 密度峰值算法 初始 簇合并 相似度 性能
在线阅读 下载PDF
融合优化可调Q因子小波变换的改进密度峰值聚类算法 被引量:1
9
作者 史曼曼 宋朝炀 张景祥 《计算机应用研究》 CSCD 北大核心 2024年第2期466-472,共7页
为提升时间序列的聚类精度,提出一种融合优化可调Q因子小波变换的改进密度峰值聚类(improved density peaks clustering based on optimal tunable Q-factor wavelet transform,OTQWT-IDPC)算法,该算法利用可调Q因子小波变换的能量优化... 为提升时间序列的聚类精度,提出一种融合优化可调Q因子小波变换的改进密度峰值聚类(improved density peaks clustering based on optimal tunable Q-factor wavelet transform,OTQWT-IDPC)算法,该算法利用可调Q因子小波变换的能量优化选择策略及改进粒子群优化算法确定的最佳Q因子分解时序信号,通过最优特征子带的能量、均值、标准差和模糊熵构建特征子空间,并采用主成分分析降低特征维度,以减少特征冗余。同时,考虑到距离较远而周围密集程度较大的K近邻样本对局部密度的贡献率,引入权重系数及K近邻重新定义DPC的局部密度,并利用共享最近邻描述样本间的相似性。在BONN癫痫脑电信号和CWRU滚动轴承数据集上进行对比实验,结果表明,该算法的聚类精度分别为95%、94%,且Jacarrd、FMI和F_(1)值指标均优于其他对比算法,证明了OTQWT-IDPC算法的有效性。 展开更多
关键词 密度峰值算法 可调Q因子小波变换 粒子群优化算法 主成分分析
在线阅读 下载PDF
VDBSCAN:变密度聚类算法 被引量:22
10
作者 周董 刘鹏 《计算机工程与应用》 CSCD 北大核心 2009年第11期137-141,153,共6页
传统的密度聚类算法不能识别并聚类多个不同密度的簇。对此提出了变密度聚类算法VDBSCAN,针对密度不稳定的数据集,可有效识别并同时聚类不同密度的簇,避免合并和遗漏。VDBSCAN算法的基本思想是:根据k-dist图和DK分析,对数据集中的不同... 传统的密度聚类算法不能识别并聚类多个不同密度的簇。对此提出了变密度聚类算法VDBSCAN,针对密度不稳定的数据集,可有效识别并同时聚类不同密度的簇,避免合并和遗漏。VDBSCAN算法的基本思想是:根据k-dist图和DK分析,对数据集中的不同密度层次自动选择一组Eps值,分别调用DBSCAN算法。不同的Eps值,能够找到不同密度的簇。4个二维数据集实验验证了VDB-SCAN算法的有效性,表明VDBSCAN算法可以有效地聚类密度不均匀的数据集,且参数Eps的自动选择方法也是有效的和健壮的。 展开更多
关键词 密度算法 基于密度的聚 dbscan 数据挖掘
在线阅读 下载PDF
基于聚类算法的天津雷暴移动特征分析
11
作者 姚慧茹 崔丹阳 +1 位作者 宋喃喃 银峰 《气象科学》 2025年第1期95-108,共14页
基于2009—2020年天津地区闪电定位数据,利用密度峰值快速搜索聚类算法和卡尔曼滤波识别雷暴单体的移动轨迹,并通过基于动态时间规整的改进层次聚类算法统计天津雷暴的主要活动区域及其移动特征。结果表明,近12 a天津地区的地闪频数存... 基于2009—2020年天津地区闪电定位数据,利用密度峰值快速搜索聚类算法和卡尔曼滤波识别雷暴单体的移动轨迹,并通过基于动态时间规整的改进层次聚类算法统计天津雷暴的主要活动区域及其移动特征。结果表明,近12 a天津地区的地闪频数存在减少趋势,地闪频数的年变化呈单峰型,峰值出现在7月;日变化的峰值出现在午夜,谷值出现在上午;地闪密度呈北多南少的空间分布。根据闪电的丛聚特性在天津地区共识别出757条雷暴轨迹。雷暴具有明显的短时性、局地性特点,约三分之二雷暴的位移不超过20 km、持续时间不超过30 min,近三分之一的雷暴向正东方向移动。天津西北部是局地性雷暴最活跃的区域,较长轨迹的雷暴数量较少且分布较分散。西北类雷暴减少趋势最显著,雷暴数量的地域性差异变小。西北类雷暴6月出现最多,西南类雷暴7、8月出现数量相当,东部类雷暴8月出现最多,其他类雷暴则在7月出现最多。 展开更多
关键词 雷暴单体 闪电定位数据 密度峰值快速搜索算法 卡尔曼滤波 轨迹
在线阅读 下载PDF
基于密度增量聚类的无线电频谱实时监测方法研究
12
作者 曹人予 《长江信息通信》 2025年第2期149-151,共3页
文章提出一种基于密度增量聚类的无线电频谱实时监测方法。该方法通过设计自适应密度阈值的增量聚类算法,实现对5G/6G场景下高速流动频谱数据的智能分析。系统采用“边缘-云端”混合架构,结合深度学习技术实现信号特征提取和自动分类。... 文章提出一种基于密度增量聚类的无线电频谱实时监测方法。该方法通过设计自适应密度阈值的增量聚类算法,实现对5G/6G场景下高速流动频谱数据的智能分析。系统采用“边缘-云端”混合架构,结合深度学习技术实现信号特征提取和自动分类。实验结果表明,在典型5G应用场景中,该方法较传统DBSCAN算法的聚类准确率提升20%以上,处理延迟降低至亚毫秒级,为复杂电磁环境下的频谱资源智能化管理提供了新的技术方案。 展开更多
关键词 密度增量 算法 无线电通信技术 频谱监测方法
在线阅读 下载PDF
混合式教学下学生成绩的改进密度峰值聚类分析研究
13
作者 陈金鹏 《计算机应用文摘》 2025年第5期19-21,共3页
随着互联网的高速发展,利用互联网资源开展混合式教学已逐渐成为高校主要的教学手段。在混合式教学环境下,采用基于引力的密度峰值聚类算法,对某高校7个班“Python程序设计”课程的学生平时成绩和期末成绩进行分析。该算法利用引力吸引... 随着互联网的高速发展,利用互联网资源开展混合式教学已逐渐成为高校主要的教学手段。在混合式教学环境下,采用基于引力的密度峰值聚类算法,对某高校7个班“Python程序设计”课程的学生平时成绩和期末成绩进行分析。该算法利用引力吸引的特性,将学生成绩数据划分为4个不同的群体,并对每个群体进行逐一分析。最后,结合混合式教学特点,针对这4个群体分别提出了具体的教学改进建议。 展开更多
关键词 混合式教学 学生成绩 基于引力的密度峰值算法
在线阅读 下载PDF
一种DBSCAN聚类点密度的加权质心定位算法 被引量:3
14
作者 李轶 张亮 +1 位作者 张然 张申 《河南科技大学学报(自然科学版)》 CAS 北大核心 2018年第2期36-39,47,共5页
加权质心定位算法是无线传感器网络中最常用的定位算法,为了进一步提高其定位精度,本文将聚类算法引入到无线传感器网络定位中,提出了一种具有噪声的基于密度的聚类算法(DBSCAN)聚类点密度的加权质心定位算法。该算法根据共线度理论选... 加权质心定位算法是无线传感器网络中最常用的定位算法,为了进一步提高其定位精度,本文将聚类算法引入到无线传感器网络定位中,提出了一种具有噪声的基于密度的聚类算法(DBSCAN)聚类点密度的加权质心定位算法。该算法根据共线度理论选择参数,构建定位三角形的集合。选择集合中定位效果较好的一部分三角形对未知节点进行定位,并对所得的初始定位结果进行DBSCAN聚类。在排除误差较大的定位坐标后,将聚类后每个簇的核心点个数视为权值,采用加权质心定位算法得到未知节点的最终定位位置。仿真结果表明:该算法与传统加权质心定位算法相比,平均定位误差减小80%以上,有效提高了无线传感器网络定位精度。 展开更多
关键词 无线传感器网络 dbscan 加权质心定位算法 共线度
在线阅读 下载PDF
一种改进的基于密度的DBSCAN聚类算法 被引量:4
15
作者 王翠茹 朵春红 《广西师范大学学报(自然科学版)》 CAS 北大核心 2007年第4期104-107,共4页
主要讨论数据挖掘领域中一种基于密度的DBSCAN聚类算法,并对算法进行改进。利用取样技术缩小数据库的规模,减少算法的运行时间。利用遗传算法对聚类结果进行优化,保证聚类的质量。给出了一种基于取样的DBSCAN算法及其遗传优化。最后实... 主要讨论数据挖掘领域中一种基于密度的DBSCAN聚类算法,并对算法进行改进。利用取样技术缩小数据库的规模,减少算法的运行时间。利用遗传算法对聚类结果进行优化,保证聚类的质量。给出了一种基于取样的DBSCAN算法及其遗传优化。最后实验证明了算法的有效性。 展开更多
关键词 数据挖掘 dbscan算法 取样 遗传算法
在线阅读 下载PDF
基于网格和密度比的DBSCAN聚类算法研究 被引量:4
16
作者 徐红艳 普蓉 +1 位作者 黄法欣 王嵘冰 《计算机与数字工程》 2020年第6期1269-1274,1285,共7页
DBSCAN已被广泛应用到计算机视觉处理及图像处理中的数据压缩和信息检索等领域。论文针对DBSCAN算法在数据分布不均匀时,使用全局阈值难以识别数据集中所有簇的问题,提出基于网格划分和密度比聚类的DBSCAN算法。该算法首先通过自适应多... DBSCAN已被广泛应用到计算机视觉处理及图像处理中的数据压缩和信息检索等领域。论文针对DBSCAN算法在数据分布不均匀时,使用全局阈值难以识别数据集中所有簇的问题,提出基于网格划分和密度比聚类的DBSCAN算法。该算法首先通过自适应多分辨率的网格划分思想把数据划分到多个网格空间中,利用所划分的网格加快查找到类簇的峰值和低谷;再利用密度估计来计算密度,从而快速确定全局阈值,并使用该全局阈值对数据集进行有效识别。通过对比实验表明,所提算法能够有效对密度不均匀的数据进行聚类,并具有较高的效率。 展开更多
关键词 密度 网格 密度 dbscan
在线阅读 下载PDF
融合改进DBSCAN聚类和多种进化策略的改进蝗虫优化算法
17
作者 于平 《仪表技术与传感器》 CSCD 北大核心 2024年第5期98-105,112,共9页
针对蝗虫优化算法复杂高维问题收敛精度不高、寻优能力不强、难以跳出局部最优的缺陷,提出一种融合改进DBSCAN聚类和多种进化策略的改进蝗虫优化算法(GOA)。首先,引入多核加权距离度量和动态并行运算策略,以提高改进DBSCAN高维数据聚类... 针对蝗虫优化算法复杂高维问题收敛精度不高、寻优能力不强、难以跳出局部最优的缺陷,提出一种融合改进DBSCAN聚类和多种进化策略的改进蝗虫优化算法(GOA)。首先,引入多核加权距离度量和动态并行运算策略,以提高改进DBSCAN高维数据聚类效率。其次,利用改进DBSCAN可以对任意形状数据集进行聚类的优势,对蝗虫种群进行聚类分析,并为蝗虫个体赋予核心点、边界点和孤立点等空间属性。最后,综合考虑种群空间特性和个体间进化程度差异性,设计多种蝗虫个体进化策略,以更好地提升算法全局寻优能力。典型复杂、高维测试函数以及经典TSP问题仿真结果表明:改进后的GOA在收敛精度上更具优势。 展开更多
关键词 蝗虫优化算法 dbscan 收敛精度
在线阅读 下载PDF
基于DBSCAN聚类算法的卫星数据分区异常检测 被引量:2
18
作者 尚星宇 《科技创新与应用》 2024年第10期138-142,共5页
随着我国第一颗电磁监测卫星的发射,卫星探测的海量数据不断涌现,探究空间载荷数据变化特征已成为当前研究热点。为了对张衡一号卫星LAP载荷数据进行异常检测,该文将处理后的数据按地理纬度划分为南纬50°到南纬20°,南纬20... 随着我国第一颗电磁监测卫星的发射,卫星探测的海量数据不断涌现,探究空间载荷数据变化特征已成为当前研究热点。为了对张衡一号卫星LAP载荷数据进行异常检测,该文将处理后的数据按地理纬度划分为南纬50°到南纬20°,南纬20°到北纬20°,北纬20°到北纬50°三个区域,依次采用DBSCAN密度聚类算法进行聚类异常检测。结果表明,该方法可用于对LAP数据的异常检测。DBSCAN密度聚类算法可用于检测卫星异常数据,为检测卫星探测数据异常、研究空间数据变化特征提供思路参考。 展开更多
关键词 ZH-1卫星 原位电子密度观测数据 异常检测 dbscan 算法
在线阅读 下载PDF
基于人工鱼群的自适应密度峰值聚类算法
19
作者 何凯琳 张正军 +1 位作者 位雅 唐莉 《计算机工程与设计》 北大核心 2024年第1期110-119,共10页
针对密度峰值聚类算法中截断距离d c和聚类中心缺乏选取依据,以及对簇中存在多密度峰值的数据无法准确聚类问题,提出一种基于人工鱼群的自适应密度峰值聚类算法(AFSADPC)。选择簇中心权值γ大于幂律分布上分位数的样本点作为聚类中心,... 针对密度峰值聚类算法中截断距离d c和聚类中心缺乏选取依据,以及对簇中存在多密度峰值的数据无法准确聚类问题,提出一种基于人工鱼群的自适应密度峰值聚类算法(AFSADPC)。选择簇中心权值γ大于幂律分布上分位数的样本点作为聚类中心,根据两个相邻簇的簇间边界区域密度与簇平均密度构造簇间合并规则,利用人工鱼群算法寻找使改进轮廓系数指标达到最大值时的最优截断距离d_(c)。在合成数据集和真实数据集上的实验结果表明,AFSADPC算法具有较好的聚类效果。 展开更多
关键词 密度峰值 算法 人工鱼群算法 截断距离 幂律分布 簇合并策略 轮廓系数
在线阅读 下载PDF
基于密度聚类算法和广度优先搜索算法的道岔摩擦电流智能分析系统
20
作者 邱晓莉 韩思远 +1 位作者 熊庆 余东 《城市轨道交通研究》 北大核心 2024年第4期114-118,共5页
[目的]现场的道岔摩擦电流测试与调整存在流程繁琐且风险高、对检修人员专业水平要求高、测定数值的主观性占比大3个弊端,为此需要基于各类智能算法及技术提升道岔的智能运维水平。[方法]分析了道岔摩擦电流测试曲线4个阶段的特征,提出... [目的]现场的道岔摩擦电流测试与调整存在流程繁琐且风险高、对检修人员专业水平要求高、测定数值的主观性占比大3个弊端,为此需要基于各类智能算法及技术提升道岔的智能运维水平。[方法]分析了道岔摩擦电流测试曲线4个阶段的特征,提出建立道岔摩擦电流的智能分析系统。阐述了该系统的功能及工作原理,设定了该系统的摩擦电流标准值及阈值范围。该系统可基于密度聚类算法和广度优先搜索算法自动获取道岔摩擦电流值。介绍了该系统的调试界面截图,以说明系统在获取道岔摩擦电流值如何为现场检修人员提供操作建议。[结果及结论]该智能系统具有良好的可用性,实现了节约检修时间、降低维护成本和提高检修效率的既定目的。 展开更多
关键词 城市轨道交通 信号 智能运维 道岔转辙机 摩擦电流 密度算法 广度优先搜索算法
在线阅读 下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部