期刊文献+
共找到397篇文章
< 1 2 20 >
每页显示 20 50 100
基于融合卷积神经网络的车辆多目标检测方法
1
作者 曹佳 郑秋梅 段泓舟 《激光杂志》 北大核心 2025年第1期208-213,共6页
在实际场景中,车辆目标往往会被其他车辆、建筑物等对象遮挡,背景也可能非常复杂,为了保障检测精度,提出一种基于融合卷积神经网络的车辆多目标检测方法。采用激光雷达采集车辆目标图像,将采集的车辆行驶图像根据其车道线特征划分为两... 在实际场景中,车辆目标往往会被其他车辆、建筑物等对象遮挡,背景也可能非常复杂,为了保障检测精度,提出一种基于融合卷积神经网络的车辆多目标检测方法。采用激光雷达采集车辆目标图像,将采集的车辆行驶图像根据其车道线特征划分为两侧区域,将车道线以内的区域作为车辆多目标检测初始感兴趣区域(ROI),在ROI中采用车底阴影假设区域分割法获取车辆检测目标的假设区域。在原始卷积神经网络的基础上作进一步优化,设计可变形卷积神经网络(DF-R-CNN)模型,将得到的假设区域作为网络模型所需的车辆多目标检测候选区域,通过该模型实现车辆多目标的精准检测。实验结果表明,所提方法的召回率最高值达到了85%,损失函数最低值约为1.8,说明其具有较高的检测精度和检测效果。 展开更多
关键词 卷积神经网络 车道线划分 感兴趣区域ROI 可变形卷积神经网络 车辆多目标检测
在线阅读 下载PDF
改进卷积神经网络的医学图像感兴趣区域识别 被引量:1
2
作者 肖衡 潘玉霞 《计算机仿真》 2024年第3期177-181,共5页
图像中的噪声会提高图像特征信息提取难度,影响图像识别时的细节保留效果,为此提出改进卷积神经网络的医学图像感兴趣区域识别方法。分析医学图像主要噪声来源,构建噪声模型,利用非局部均值滤波算法计算图像全部像素的加权平均值,完成... 图像中的噪声会提高图像特征信息提取难度,影响图像识别时的细节保留效果,为此提出改进卷积神经网络的医学图像感兴趣区域识别方法。分析医学图像主要噪声来源,构建噪声模型,利用非局部均值滤波算法计算图像全部像素的加权平均值,完成图像去噪处理;通过图像求反、对比度增加和灰度调节等操作增强图像细节信息;利用局部区域特征提取方法获取图像基础纹理特征,包括灰度、平滑度与熵值等;建立具有卷积层、池化层、全连接层的卷积神经网络模型,引入区域建议网络对其改进,通过该网络确定识别的候选区域,将图像特征作为网络输入,经过不断学习迭代,输出最终感兴趣区域。实验结果表明,所提方法在提高图像质量的基础上,识别出的感兴趣区域较为完整,包含的有用信息更多。 展开更多
关键词 卷积神经网络 区域建议网络 医学图像 感兴趣区域识别 去噪处理
在线阅读 下载PDF
基于卷积神经网络算法的带电作业机器人夜间目标识别技术研究
3
作者 原玮 陈太雷 +1 位作者 徐亮 王天明 《移动信息》 2025年第3期255-257,共3页
通过机器人对线路绝缘子等装置进行维护、检修和清洗作业,对保障电力系统的供电质量具有重要作用。然而,夜间环境下带电作业机器人仍存在工作效率低、目标检测精度差等问题。基于此,文中提出了一种基于卷积神经网络(ConvNet)和区域建议... 通过机器人对线路绝缘子等装置进行维护、检修和清洗作业,对保障电力系统的供电质量具有重要作用。然而,夜间环境下带电作业机器人仍存在工作效率低、目标检测精度差等问题。基于此,文中提出了一种基于卷积神经网络(ConvNet)和区域建议网络(RPN)的绝缘子目标识别算法。论证发现,基于ConvNet-RPN的模型可以显著改善夜间环境下带电作业机器人的识别精度,具有良好的性能。 展开更多
关键词 输电线路 目标检测 卷积神经网络 区域建议网络
在线阅读 下载PDF
基于并联卷积神经网络的无人机遥感影像建筑区域测量 被引量:1
4
作者 黄艳晖 向环丽 余荣春 《计算机测量与控制》 2024年第3期44-49,共6页
无人机遥感影像覆盖范围广,难以区分建筑区域与背景区域,导致无人机遥感影像建筑区域测量结果可靠性下降;以解决这一问题作为研究目标,提出了一种基于并联卷积神经网络的无人机遥感影像建筑区域测量方法;获取无人机遥感影像,通过静态输... 无人机遥感影像覆盖范围广,难以区分建筑区域与背景区域,导致无人机遥感影像建筑区域测量结果可靠性下降;以解决这一问题作为研究目标,提出了一种基于并联卷积神经网络的无人机遥感影像建筑区域测量方法;获取无人机遥感影像,通过静态输出、图像融合、去雾等环节完成遥感影像预处理;构建并联卷积神经网络,通过网络训练传播提取预处理后无人机遥感影像建筑区域边缘特征,经过特征匹配实现无人机遥感影像中建筑区域识别,结合面积计算结果得到建筑区域的测量结果;经过精度性能测试实验得出结论,在有雾和无雾环境下所提方法与传统区域测量方法相比的建筑区域测量误差分别降低了0.505 km^(2)和0.305 km^(2),说明该方法的测量结果可靠性更高,可以广泛应用在无人机遥感影像建筑区域测量领域。 展开更多
关键词 并联卷积神经网络 无人机测量 遥感影像 建筑区域测量
在线阅读 下载PDF
基于改进快速区域卷积神经网络的视频SAR运动目标检测算法研究 被引量:33
5
作者 闫贺 黄佳 +3 位作者 李睿安 王旭东 张劲东 朱岱寅 《电子与信息学报》 EI CSCD 北大核心 2021年第3期615-622,共8页
针对传统视频SAR(ViSAR)运动目标检测方法存在的帧间配准难度大、快速运动目标阴影特征不明显、虚警概率高等问题,该文提出一种基于改进快速区域卷积神经网络(Faster R-CNN)的视频SAR运动目标检测方法。该方法结合Faster R-CNN深度学习... 针对传统视频SAR(ViSAR)运动目标检测方法存在的帧间配准难度大、快速运动目标阴影特征不明显、虚警概率高等问题,该文提出一种基于改进快速区域卷积神经网络(Faster R-CNN)的视频SAR运动目标检测方法。该方法结合Faster R-CNN深度学习算法,利用K-means聚类方法对anchor box的长宽及长宽比进行预处理,并采用特征金字塔网络(FPN)架构对视频SAR运动目标的“亮线”特征进行检测。与传统方法相比,该方法具有实现简单、检测概率高、虚警概率低等优势。最后,通过课题组研制的Mini-SAR系统获取的实测视频SAR数据验证了新方法的有效性。 展开更多
关键词 视频SAR 运动目标检测 快速区域卷积神经网络 特征金字塔网络 K-MEANS
在线阅读 下载PDF
基于可变形卷积神经网络的遥感影像密集区域车辆检测方法 被引量:21
6
作者 高鑫 李慧 +5 位作者 张义 闫梦龙 张宗朔 孙显 孙皓 于泓峰 《电子与信息学报》 EI CSCD 北大核心 2018年第12期2812-2819,共8页
车辆检测是遥感图像分析领域的热点研究内容之一,车辆目标的智能提取和识别,对于交通管理、城市建设有重要意义。在遥感领域中,现有基于卷积神经网络的车辆检测方法存在实现过程复杂并且对于车辆密集区域检测效果不理想的缺陷。针对上... 车辆检测是遥感图像分析领域的热点研究内容之一,车辆目标的智能提取和识别,对于交通管理、城市建设有重要意义。在遥感领域中,现有基于卷积神经网络的车辆检测方法存在实现过程复杂并且对于车辆密集区域检测效果不理想的缺陷。针对上述问题,该文提出基于端到端的神经网络模型DF-RCNN以提高车辆密集区域的检测精度。首先,在特征提取阶段,DF-RCNN模型将深浅层特征图的分辨率统一并融合;其次,DFRCNN模型结合可变形卷积和可变形感兴趣区池化模块,通过加入少量的参数和计算量以学习目标的几何形变。实验结果表明,该文提出的模型针对密集区域的车辆目标具有较好的检测性能。 展开更多
关键词 遥感影像 车辆检测 密集区域 端到端卷积神经网络
在线阅读 下载PDF
区域生长全卷积神经网络交互分割肝脏CT图像 被引量:6
7
作者 张丽娟 章润 +2 位作者 李东明 李阳 王晓坤 《液晶与显示》 CAS CSCD 北大核心 2021年第9期1294-1304,共11页
由于医疗图像质量差、对比度低、患者之间差异大导致全自动分割方法很难获得足够准确、鲁棒的结果。为了解决全自动分割方法的局限性,本文提出一种基于神经网络改进的区域生长法,并与全卷积神经网络相结合对肝脏CT图像进行交互式分割。... 由于医疗图像质量差、对比度低、患者之间差异大导致全自动分割方法很难获得足够准确、鲁棒的结果。为了解决全自动分割方法的局限性,本文提出一种基于神经网络改进的区域生长法,并与全卷积神经网络相结合对肝脏CT图像进行交互式分割。首先对图像进行预处理,突出待分割肝脏区域;接着计算像素在不同边缘检测算子下的梯度值作为该像素的特征,形成像素特征向量训练网络该网络以一对像素特征向量为输入,以两像素的关联度系数为输出;然后将训练好的神经网络模型作为区域生长算法的生长准则,手动交互选取一点产生分割结果;最后将分割结果作为原图的交互信息和原图灰度通道连接在一起一同输入全卷积神经网络。实验结果表明平均Dice系数达到96.69%,像素准确率达到99.62%,平均交并比达到96.65%。不同的腹部CT图像序列中肝脏的分割结果表明,该方法能精确提取肝脏区域,满足临床应用的需求。 展开更多
关键词 卷积神经网络 区域生长法 交互式分割
在线阅读 下载PDF
基于改进区域卷积神经网络的安全帽佩戴检测 被引量:18
8
作者 徐守坤 王雅如 顾玉宛 《计算机工程与设计》 北大核心 2020年第5期1385-1389,共5页
针对已有的安全帽佩戴检测算法对小尺寸目标和部分遮挡目标检测效果较差的问题,在区域卷积神经网络基础上,做出优化用于安全帽佩戴检测。在原始Faster RCNN的基础上使用多层卷积特征融合技术优化区域建议网络产生候选区域特征图,使用在... 针对已有的安全帽佩戴检测算法对小尺寸目标和部分遮挡目标检测效果较差的问题,在区域卷积神经网络基础上,做出优化用于安全帽佩戴检测。在原始Faster RCNN的基础上使用多层卷积特征融合技术优化区域建议网络产生候选区域特征图,使用在线困难样本挖掘技术训练ROI网络,自动挑选出困难样本使训练更加有效。实验结果表明,相比原始的Faster RCNN算法,所提方法检测精度提高了4.73%,对部分遮挡和小尺寸目标均有较好的检测效果,对环境变化具有更强的适应性。 展开更多
关键词 安全帽佩戴检测 区域卷积神经网络 区域建议网络 多层卷积特征融合 在线困难样本挖掘
在线阅读 下载PDF
基于加速区域卷积神经网络的高铁接触网承力索底座裂纹检测研究 被引量:8
9
作者 刘凯 刘志刚 陈隽文 《铁道学报》 EI CAS CSCD 北大核心 2019年第7期43-49,共7页
针对高速铁路接触网支撑结构中承力索底座裂纹的问题,提出一种利用加速区域卷积神经网络与Beamlet变换相结合的图像检测方法。该方法使用加速区域卷积神经网络实现对承力索底座在待检测图像中的识别定位,然后根据定位的承力索底座图像特... 针对高速铁路接触网支撑结构中承力索底座裂纹的问题,提出一种利用加速区域卷积神经网络与Beamlet变换相结合的图像检测方法。该方法使用加速区域卷积神经网络实现对承力索底座在待检测图像中的识别定位,然后根据定位的承力索底座图像特点,通过Radon变换等预处理操作对承力索底座疑似裂纹区域精确定位,最后使用基于Beamlet变换的局部链搜索算法快速得到裂纹信息,实现承力索底座裂纹故障的可靠诊断。实验表明:该方法能在复杂的接触网支撑与悬挂装置图像中准确定位识别承力索底座裂纹故障,对拍摄距离、拍摄角度以及曝光度等因素具有很好的适应性,且具有较高的检测效率。 展开更多
关键词 高铁接触网 承力索底座 加速区域卷积神经网络 BEAMLET变换
在线阅读 下载PDF
基于区域卷积神经网络的多目标跟踪算法 被引量:3
10
作者 胡鹏 杨伟清 范勇 《西南科技大学学报》 CAS 2016年第1期67-71,102,共6页
深度学习在目标识别、场景分割及图像内容理解上取得了不错的研究成果,但在目标跟踪的应用还较少。提出区域选择算法,先产生原始候选区域,再计算其中邻近区域对的颜色、纹理相似性,对原始候选区域进行过滤,在此基础上,将最终的候选区域... 深度学习在目标识别、场景分割及图像内容理解上取得了不错的研究成果,但在目标跟踪的应用还较少。提出区域选择算法,先产生原始候选区域,再计算其中邻近区域对的颜色、纹理相似性,对原始候选区域进行过滤,在此基础上,将最终的候选区域作为基于区域的卷积神经网络的输入,通过深度学习的方法提取目标区域的特征,并将提取的特征通过线性支持向量机进行相似度判断,最终计算出跟踪目标的位置信息,同时,利用采样算法进行跟踪目标正负样本的采样,更新卷积神经网络和支持向量机。实验结果表明,基于区域的卷积神经网络算法在目标跟踪的准确率及算法的鲁棒性两方面均有不错的表现。 展开更多
关键词 候选区域 卷积神经网络 多目标跟踪 深度学习
在线阅读 下载PDF
基于改进掩膜区域卷积神经网络的输电线路绝缘子自爆检测 被引量:21
11
作者 苟军年 杜愫愫 刘力 《电工技术学报》 EI CSCD 北大核心 2023年第1期47-59,共13页
由于背景复杂、目标所占像素比例较小,掩膜区域卷积神经网络(Mask R-CNN)模型对输电线路绝缘子缺陷检测能力不足,该文提出一种改进的MaskR-CNN模型。具体地,首先,在特征提取网络中引入卷积注意力模块(CBAM),分别从通道和空间提升小目标... 由于背景复杂、目标所占像素比例较小,掩膜区域卷积神经网络(Mask R-CNN)模型对输电线路绝缘子缺陷检测能力不足,该文提出一种改进的MaskR-CNN模型。具体地,首先,在特征提取网络中引入卷积注意力模块(CBAM),分别从通道和空间提升小目标特征保持性;其次,使用全局交并比(GIoU)计算目标间的相似度,提升定位准确性;最后,使用Tversky损失计算掩膜分支的损失,以提升不平衡样本下的检测效果。使用某输电运检中心无人机巡检作业所得具有自爆缺陷的绝缘子照片作为数据集对该模型进行验证,实验结果表明,与原始Mask R-CNN模型相比,该方法的平均精确率AP50:90、AP50和AP75分别提升至0.56、0.79和0.72;与三种经典目标检测算法相比,该算法具有较高的检测精度,模型的分割性能有一定提升,且比原始模型具有更好的鲁棒性,可以满足电力巡检中准确性和快速性的要求。 展开更多
关键词 绝缘子缺陷检测 掩膜区域卷积神经网络 卷积注意力模块 特征融合 全局交并比 Tversky损失
在线阅读 下载PDF
基于运动区域差分与卷积神经网络的动作识别 被引量:9
12
作者 陈晓春 林博溢 +1 位作者 孙乾 张坤华 《计算机工程》 CAS CSCD 北大核心 2019年第12期274-280,293,共8页
针对视频动作识别中数据处理效率不高的问题,建立一种基于视频帧间差分序列的动作识别模型。利用帧间差分检测视频帧中的运动区域,以该区域为中心进行相应的图像剪切和增强处理。整个识别模型采用双流架构,在数据样本制作时通过适当的... 针对视频动作识别中数据处理效率不高的问题,建立一种基于视频帧间差分序列的动作识别模型。利用帧间差分检测视频帧中的运动区域,以该区域为中心进行相应的图像剪切和增强处理。整个识别模型采用双流架构,在数据样本制作时通过适当的隔帧差分来扩大样本的时间跨度。采用分阶段逐步增加训练样本量的方法,以提升模型识别性能并解决训练过程中易出现的过拟合问题。实验结果表明,该模型可以在CPU级配置的电脑中完成快速动作识别,且在UCF11和UCF25数据集中的识别准确率均高于85%。 展开更多
关键词 帧间差分 动作识别 双流架构 卷积神经网络 运动区域
在线阅读 下载PDF
利用卷积神经网络的显著性区域预测方法 被引量:9
13
作者 李荣 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2019年第1期37-43,共7页
针对神经网络的显著性区域预测存在数据采集代价大、处理繁琐等问题,提出2种卷积神经网络,即从头开始训练的浅层卷积神经网络,以及前三层源自另一个网络的深层卷积神经网络。其中,浅层网络结构简单,可避免过拟合问题;深层网络可以充分... 针对神经网络的显著性区域预测存在数据采集代价大、处理繁琐等问题,提出2种卷积神经网络,即从头开始训练的浅层卷积神经网络,以及前三层源自另一个网络的深层卷积神经网络。其中,浅层网络结构简单,可避免过拟合问题;深层网络可以充分利用最底层的模型参数,收敛更快,效果更好。所提卷积神经网络应用于回归问题,均没有直接训练特征图的线性模型,而是在迁移层上训练了一堆新的卷积层。从端到端的角度解决显著性预测,将学习过程演化为损失函数的最小化问题。测试和训练在SALICON,SUN和MIT300数据集上进行,实验结果验证了所提方法的有效性。其中,深层网络和浅层网络在SALICON和SUN数据上的结果相似,深层网络在MIT300上的结果更优,与其他方法相比,所提方法具有不错的表现,而且具有跨数据集的鲁棒性。 展开更多
关键词 显著性区域预测 卷积神经网络 损失函数 显著度图 鲁棒性
在线阅读 下载PDF
基于3D卷积神经网络-感兴趣区域的阿尔茨海默症辅助诊断模型 被引量:6
14
作者 曾安 邹超 潘丹 《生物医学工程研究》 2020年第2期133-138,144,共7页
磁共振(magnetic resonance imaging,MRI)图像的预测分类对早期阿尔茨海默症(Alzheimer′s disease,AD)的诊断非常重要。轻度认知障碍(mild cognitive impairment,MCI)作为AD的一种早期阶段,在诊断时存在大脑脑区萎缩区域不明确,诊断准... 磁共振(magnetic resonance imaging,MRI)图像的预测分类对早期阿尔茨海默症(Alzheimer′s disease,AD)的诊断非常重要。轻度认知障碍(mild cognitive impairment,MCI)作为AD的一种早期阶段,在诊断时存在大脑脑区萎缩区域不明确,诊断准确率偏低等问题。本研究提出一种基于感兴趣区域(regions of interest,ROI)的3D卷积神经网络(convolutional neural network,CNN)模型来解决AD分类准确率偏低等问题,进而实现对AD的计算机辅助诊断。实验数据均来自ADNI数据库,实验结果表明,基于ROI的3D CNN的AD辅助诊断模型在分类AD vs正常对照(normal control,NC)、MCI转化AD(MCI converted to AD,MCIc)vs NC和MCI未被转化AD(MCI not converted to AD,MCInc)vs MCIc的5折交叉验证平均准确率分别为85.2%、83.9%、68.5%。相比于传统的主成分分析+支持向量机方法和单纯的切片集成方法,本研究方法在AD辅助诊断中取得了更好的分类效果和泛化能力,还可为其他脑疾病诊断提供新思路。 展开更多
关键词 阿尔茨海默症 分类 卷积神经网络 感兴趣区域 交叉验证
在线阅读 下载PDF
基于卷积神经网络的实时视频目标检测优化方法
15
作者 兰玉博 《信息与电脑》 2024年第3期21-23,共3页
文章引入动态感兴趣区域(Dynamic Region of Interest,DROI)策略,提高基于区域卷积神经网络的快速目标检测(Faster Region-based Convolutional Neural Networks,Faster R-CNN)模型在实时视频目标检测任务中的性能。首先,分析Faster R-C... 文章引入动态感兴趣区域(Dynamic Region of Interest,DROI)策略,提高基于区域卷积神经网络的快速目标检测(Faster Region-based Convolutional Neural Networks,Faster R-CNN)模型在实时视频目标检测任务中的性能。首先,分析Faster R-CNN;其次,提出一种基于DROI的优化方法,通过动态调整感兴趣区域以适应目标的运动和变化;最后,在MOT17数据集上进行实验,验证该优化方法的有效性。 展开更多
关键词 卷积神经网络 动态感兴趣区域 目标检测 实时性
在线阅读 下载PDF
基于卷积神经网络快速区域标定的表面缺陷检测 被引量:25
16
作者 李宜汀 谢庆生 +2 位作者 黄海松 姚立国 魏琴 《计算机集成制造系统》 EI CSCD 北大核心 2019年第8期1897-1907,共11页
为检测生产线中产品的表面缺陷,提出一种基于卷积神经网络快速区域标定(FasterR-CNN)的缺陷检测方法,用于识别缺陷类型并标记出缺陷位置。预处理阶段提出区域规划方法粗略裁剪出缺陷主体,以避免产生大量冗余窗口,从而提升检测速度和精... 为检测生产线中产品的表面缺陷,提出一种基于卷积神经网络快速区域标定(FasterR-CNN)的缺陷检测方法,用于识别缺陷类型并标记出缺陷位置。预处理阶段提出区域规划方法粗略裁剪出缺陷主体,以避免产生大量冗余窗口,从而提升检测速度和精度。所提算法结合数据扩充方法增加了图像数量,通过划分K折交叉验证数据集改善了算法的鲁棒性;同时,将稀疏滤波思想融入卷积神经网络,提取双重深度特征作为FasterR-CNN的输入,提升了FasterR-CNN位置检测和识别的精度。通过油辣椒灌装生产线的封盖面典型缺陷检测验证了所提方法的可行性。 展开更多
关键词 表面缺陷检测 卷积神经网络快速区域标定 位置检测 稀疏滤波 生产过程监控
在线阅读 下载PDF
基于迁移学习深度卷积神经网络的配电网故障区域定位 被引量:47
17
作者 孟子超 杜文娟 王海风 《南方电网技术》 CSCD 北大核心 2019年第7期25-33,共9页
数据驱动方式作为解决配电网故障定位的新方法,由于配电网故障样本数量相对较少而受到限制。为此提出了一种基于迁移学习的深度卷积神经网络(CNN)故障区域定位方法,以解决深度学习中小样本下学习效果差的问题。首先,分析了迁移学习和CN... 数据驱动方式作为解决配电网故障定位的新方法,由于配电网故障样本数量相对较少而受到限制。为此提出了一种基于迁移学习的深度卷积神经网络(CNN)故障区域定位方法,以解决深度学习中小样本下学习效果差的问题。首先,分析了迁移学习和CNN的特点,论述了二者应用于配电网故障区域定位问题的可行性与优势。然后,利用ResNet50网络搭建了基于迁移学习的CNN模型。IEEE33节点配电网模型验证表明,所提方法仅利用两个测点的电压电流信息,在小样本情况下能迅速完成对故障区域的准确定位,且不易受过渡电阻、故障类型、噪声等因素影响。 展开更多
关键词 深度学习 迁移学习 卷积神经网络 配电网 故障区域定位
在线阅读 下载PDF
基于改进区域卷积神经网络的田间玉米叶部病害识别 被引量:15
18
作者 樊湘鹏 周建平 许燕 《华南农业大学学报》 CAS CSCD 北大核心 2020年第6期82-91,共10页
【目的】引入区域卷积神经网络Faster R-CNN算法并对其改进,以实现在田间真实环境下背景复杂且具有相似病斑特征的玉米病害的智能诊断。【方法】在玉米田间和公开数据集网站获取具有复杂背景的9种常见病害图像1150幅,人工标注后对原始... 【目的】引入区域卷积神经网络Faster R-CNN算法并对其改进,以实现在田间真实环境下背景复杂且具有相似病斑特征的玉米病害的智能诊断。【方法】在玉米田间和公开数据集网站获取具有复杂背景的9种常见病害图像1150幅,人工标注后对原始图像进行离线数据增强扩充;对Faster R-CNN算法进行适应性改进,在卷积层加入批标准化处理层,引入中心代价函数构建混合代价函数,提高相似病斑的识别精度;采用随机梯度下降算法优化训练模型,分别选取4种预训练的卷积结构作为Faster R-CNN的特征提取网络进行训练,并测试得到最优特征提取网络,利用训练好的模型选取不同天气条件下的测试集进行对比,并将改进Faster R-CNN与未改进的Faster R-CNN和SSD算法进行对比试验。【结果】在改进Faster R-CNN病害识别框架中,以VGG16卷积层结构作为特征提取网络具有更出色的性能,利用测试集图像检验模型,识别结果的平均精度为0.9718,平均召回率为0.9719,F1为0.9718,总体平均准确率可达97.23%;晴天的图像识别效果优于阴天的。改进Faster R-CNN算法与未改进的Faster R-CNN算法相比,平均精度高0.0886,单张图像检测耗时减少0.139 s;与SSD算法相比,平均精度高0.0425,单张图像检测耗时减少0.018 s,表明在大田环境中具有复杂背景的玉米病害智能检测领域,改进Faster R-CNN算法综合性能优于未改进的Faster R-CNN算法和SSD算法。【结论】将改进后的Faster R-CNN算法引入田间复杂条件下的玉米病害智能诊断是可行的,具有较高的准确率和较快的检测速度,能够避免传统人工识别的主观性,该方法为田间玉米病害的及时精准防控提供了依据。 展开更多
关键词 玉米病害 复杂背景 数据增强 区域卷积神经网络 批归一化 混合损失函数
在线阅读 下载PDF
基于卷积神经网络的卫星遥感图像区域识别研究
19
作者 胡琼 《九江学院学报(自然科学版)》 CAS 2020年第3期74-76,共3页
为了能够将卫星遥感图像识别效果和分类效果进一步提高,文章主要提出了一种以卷积神经网络为基础的卫星遥感图像区域识别的方法,通过研究可以知道该方法具有较好的模型泛化能力和模型数据表达能力,比传统的图像识别方法和卷积神经网络... 为了能够将卫星遥感图像识别效果和分类效果进一步提高,文章主要提出了一种以卷积神经网络为基础的卫星遥感图像区域识别的方法,通过研究可以知道该方法具有较好的模型泛化能力和模型数据表达能力,比传统的图像识别方法和卷积神经网络模型的识别效果都好,具有较好的应用价值和应用前景。 展开更多
关键词 卷积神经网络 卫星遥感 遥感图像 区域识别
在线阅读 下载PDF
区域卷积神经网络用于遥感影像车辆检测 被引量:5
20
作者 王雪 隋立春 +1 位作者 李顶萌 李丽 《公路交通科技》 CAS CSCD 北大核心 2018年第3期103-108,共6页
针对大范围快速的车辆检测与计数,利用高分辨率卫星影像数据,提出了一种基于区域卷积神经网络的车辆检测算法。区域卷积神经网络是深度卷积神经网络和区域建议网络二者的结合。首先利用深度卷积神经网络自动提取各个层的特征,为了减少... 针对大范围快速的车辆检测与计数,利用高分辨率卫星影像数据,提出了一种基于区域卷积神经网络的车辆检测算法。区域卷积神经网络是深度卷积神经网络和区域建议网络二者的结合。首先利用深度卷积神经网络自动提取各个层的特征,为了减少检测窗口的数量,提出区域建议网络,对下采样后的每个位置考虑3种窗口和对应的3种比例,这样大大减少了检测窗口的数量。再根据分类器对目标进行分类。这样将特征、检测窗口和分类器有效地结合在一起。在对遥感影像车辆检测试验中,通过对手工标注的车辆样本数据多次迭代来训练卷积神经网络和区域建议网络获取车辆检测的先验模型,再由先验模型检测出测试影像中车辆目标。与传统的基于梯度方向直方图(HOG)特征和支持向量机(SVM)车辆检测算法进行比较,在检测率方面,区域卷积神经网络算法明显高于HOG+SVM算法;在误检率方面,区域卷积神经网络检测明显小于HOG+SVM算法;在检测时间方面,同样的一张图像,区域卷积神经网络检测速度比HOG+SVM算法提升近800倍。试验结果表明:利用区域卷积神经网络方法进行大范围车辆检测,在精度和速度方面都有显著提升。 展开更多
关键词 交通工程 车辆检测 卷积神经网络 区域建议网络 遥感影像
原文传递
上一页 1 2 20 下一页 到第
使用帮助 返回顶部