期刊文献+
共找到940篇文章
< 1 2 47 >
每页显示 20 50 100
改进鲸鱼算法构建反向传播神经网络粮食产量预测模型及效果分析
1
作者 赵晶晶 陈岩 《科学技术与工程》 北大核心 2025年第7期2748-2759,共12页
为了给农业及其相关部门制定粮食策略提供理论依据,提出一种基于改进鲸鱼优化算法(improved whale optimization algorithm,IWOA)的反向传播(back propagation,BP)神经网络混合算法(IWOA-BP)。该混合算法先通过引入改进收敛因子、非线... 为了给农业及其相关部门制定粮食策略提供理论依据,提出一种基于改进鲸鱼优化算法(improved whale optimization algorithm,IWOA)的反向传播(back propagation,BP)神经网络混合算法(IWOA-BP)。该混合算法先通过引入改进收敛因子、非线性惯性权重和最优邻域扰动策略改进鲸鱼优化算法,再将其最优解赋值给BP神经网络的权值和阈值,最终提高IWOA-BP的收敛速度和收敛精度。选取全国近45年粮食总产量和7种影响因素(有效灌溉面积、化肥施用量、农村用电量、农业机械总动力、粮食作物播种面积、受灾面积和农村人均消费支出)作为数据集,构建基于改进鲸鱼算法的反向传播神经网络粮食产量预测模型。多次实验表明,IWOA-BP模型在测试集上的表现均优于其他预测模型,包括长短期记忆网络(long short-term memory network,LSTM)预测模型、极限学习机(extreme learning machine,ELM)预测模型、基于鲸鱼优化算法的BP神经网络(WOA-BP)预测模型以及基于粒子群算法的BP神经网络(PSO-BP)预测模型。IWOA-BP模型和ELM模型相比,前者的均方根误差(root mean square error,RMSE)、平均绝对百分比误差(mean absolute percentage error,MAPE)分别降低了77.12%、88.18%;和LSTM模型相比,前者的RMSE、MAPE分别降低了69.11%、47.36%;和WOA-BP模型相比,前者的平均绝对误差(mean absolute error,MAE)、RMSE和MAPE分别降低了43.78%、43.22%、45.96%。和PSO-BP模型相比,前者的MAE、RMSE、MAPE分别降低了89.67%、90.61%、90.82%。因此IWOA-BP预测模型的决定系数更高、预测误差更小且收敛速度更快,可有效地预测粮食产量,对于农业部门和相关政策制定者来说具有重要的技术参考价值。 展开更多
关键词 粮食产量 反向传播神经网络 鲸鱼优化算法 非线性惯性权重 随机扰动策略
在线阅读 下载PDF
基于脉冲序列标识的深度脉冲神经网络时空反向传播算法 被引量:1
2
作者 王子华 叶莹 +3 位作者 刘洪运 许燕 樊瑜波 王卫东 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第6期2596-2604,共9页
尖峰放电的脉冲神经网络(SNN)具有接近大脑皮层的信号处理模式,被认为是实现大脑启发计算的重要途径。但是,目前对于深度脉冲神经网络的学习仍缺乏有效的监督学习算法。受尖峰放电速率标识的时空反向传播算法的启发,该文提出一种面向深... 尖峰放电的脉冲神经网络(SNN)具有接近大脑皮层的信号处理模式,被认为是实现大脑启发计算的重要途径。但是,目前对于深度脉冲神经网络的学习仍缺乏有效的监督学习算法。受尖峰放电速率标识的时空反向传播算法的启发,该文提出一种面向深度脉冲神经网络训练的基于时间脉冲序列标识的监督学习算法,通过定义突触后电位和膜电位反传迭代因子分别分析脉冲神经元的空间和时间依赖关系,使用替代梯度的方法解决反传过程中不连续可微的问题。不同于现有基于尖峰放电速率标识的学习算法,该算法能够充分反映脉冲神经网络输出的时间脉冲序列的动态特性。因此,所提算法非常适合应用于需要较长时间序列标识的计算任务,例如行为的时间脉冲序列控制。该文在静态图像数据集CIFAR10和神经形态数据集NMNIST上验证了所提算法的有效性,在所有这些数据集上都显示出良好的性能,这有助于进一步研究基于时间脉冲序列应用的大脑启发计算。 展开更多
关键词 脉冲神经网络 监督学习 误差反向传播 时间脉冲序列标识 替代梯度
在线阅读 下载PDF
基于K-近邻算法改进粒子群-反向传播算法的织物质量预测技术 被引量:1
3
作者 孙长敏 戴宁 +5 位作者 沈春娅 徐开心 陈炜 胡旭东 袁嫣红 陈祖红 《纺织学报》 EI CAS CSCD 北大核心 2024年第7期72-77,共6页
为解决现有下机织物质量差异性较大且传统验布环节时间较长等问题,提出基于K-近邻(KNN)算法改进粒子群-反向传播(PSO-BP)算法的织物质量等级预测方法。首先分析织物质量预测模型,整理织物疵点类型与织物质量等级分类,并根据织物疵点特... 为解决现有下机织物质量差异性较大且传统验布环节时间较长等问题,提出基于K-近邻(KNN)算法改进粒子群-反向传播(PSO-BP)算法的织物质量等级预测方法。首先分析织物质量预测模型,整理织物疵点类型与织物质量等级分类,并根据织物疵点特征将疵点划分为6类;其次选取14种影响织物质量的因子作为模型输入量;然后详细介绍依据KNN与PSO原理进行织物质量预测流程;最后以浙江兰溪某纺织厂近3个月16186条织物生产数据为例,建立织物质量预测模型。结果显示:该技术对织物质量预测的准确率达到98.054%,且训练时长仅需4.8 s,在保证织物质量预测准确性的同时,极大缩短了检测时间,提高了织造车间生产效率。 展开更多
关键词 织布车间 织物质量 K-近邻算法 粒子群-反向传播神经网络算法 织物质量预测
在线阅读 下载PDF
改善神经网络反向传播算法的训练时间 被引量:2
4
作者 曾国荪 《小型微型计算机系统》 CSCD 北大核心 1996年第11期69-72,共4页
反向传播神经网络的研究,最重要的任务之一是改善训练时间。本文提出了两种用来减少训练时间的新方法,这两种新方法是在传统和典型方法基础上的适当修改。我们给出了一些应用修改后的反向传播算法、计算机实验后的有兴趣的结果。
关键词 神经网络 训练时间 反向传播 算法
在线阅读 下载PDF
基于反向传播算法的网络安全态势感知仿真 被引量:2
5
作者 张婷婷 王智强 《计算机仿真》 2024年第3期436-440,共5页
随着互联网技术的广泛应用,网络信息传输的数量日益提升,网络安全态势感知的需求也逐渐增加。针对当前网络安全态势感知算法检测准确率率低,误差较大等问题,提出了基于反向传播算法的网络安全态势感知模型。首先采用大数据分析方法对入... 随着互联网技术的广泛应用,网络信息传输的数量日益提升,网络安全态势感知的需求也逐渐增加。针对当前网络安全态势感知算法检测准确率率低,误差较大等问题,提出了基于反向传播算法的网络安全态势感知模型。首先采用大数据分析方法对入侵信息的特征按节点分解并进行分段分析;其次通过切换检测信道和空间节点的分布式融合方法对关键节点进行分析,提取入侵数据的特征;然后通过反向传播算法对基本的感知原理进行优化,以减小模型检测过程中的误差;最后基于信息融合的结果进行优化,通过模糊识别的方法对入侵行为进行检测,达到安全态势感知的效果。实验结果表明,相比其它算法,所提模型将平均绝对误差缩小近5%,预测精确度提升至少7%,有最佳的实验效果,推动了网络安全态势感知技术的发展和应用。 展开更多
关键词 网络安全态势感知 反向传播算法 入侵检测 无线传感节点
在线阅读 下载PDF
基于遗传算法-反向传播神经网络优化高压-超声-酶解法提取羊皮胶原蛋白工艺
6
作者 朱明 张德权 +5 位作者 李少博 陈丽 侯成立 程成鹏 于江颖 关文强 《肉类研究》 北大核心 2024年第6期42-50,共9页
采用高压-超声-酶解法提取羊皮胶原蛋白,对比遗传算法-反向传播(genetic algorithm-back propagation,GA-BP)神经网络模型和响应面模型的优化效果,确定最佳工艺参数。结果表明:GA-BP神经网络在模型拟合和预测方面表现优于响应面模型;最... 采用高压-超声-酶解法提取羊皮胶原蛋白,对比遗传算法-反向传播(genetic algorithm-back propagation,GA-BP)神经网络模型和响应面模型的优化效果,确定最佳工艺参数。结果表明:GA-BP神经网络在模型拟合和预测方面表现优于响应面模型;最佳提取参数为高压时间23 min、超声时间22 min、酶添加量3.2%、酶解时间222 min,羊皮胶原蛋白提取率达到(80.5±1.6)%,较传统的木瓜蛋白酶法提高40%;紫外-可见吸收光谱和傅里叶变换红外光谱结果显示,此条件下提取的羊皮胶原蛋白结构完整,高压-超声-酶解法对胶原蛋白的破坏较小。 展开更多
关键词 羊皮 羊皮胶原蛋白 高压-超声-酶解法 遗传算法-反向传播神经网络 响应面法
在线阅读 下载PDF
基于反向传播-自适应提升算法的谐波阻抗估计 被引量:1
7
作者 夏焰坤 任俊杰 《电力系统及其自动化学报》 CSCD 北大核心 2024年第3期118-125,共8页
目前,关于量化谐波阻抗的研究大多数是基于系统侧谐波阻抗不发生改变而设定,当系统谐波阻抗变动时,如何估计谐波阻抗的研究相对较少。为此,本文提出一种基于系统谐波阻抗变动背景下的系统谐波阻抗估计新方法。首先,加窗处理谐波电压、... 目前,关于量化谐波阻抗的研究大多数是基于系统侧谐波阻抗不发生改变而设定,当系统谐波阻抗变动时,如何估计谐波阻抗的研究相对较少。为此,本文提出一种基于系统谐波阻抗变动背景下的系统谐波阻抗估计新方法。首先,加窗处理谐波电压、电流测量数据,使用二元线性回归法估算系统谐波阻抗,并用小波包变换对测量数据进行分段,以找出系统谐波阻抗变动的时间;其次,采用反向传播-自适应提升算法精确量化每个采样数据段的系统谐波阻抗;最后,通过仿真与实例分析验证本文方法相较于其他方法具有更好的鲁棒性和精确性。 展开更多
关键词 系统侧谐波阻抗 小波包变换法 反向传播-自适应提升算法 鲁棒性
在线阅读 下载PDF
基于改进反向传播算法的声音识别及健康检测技术 被引量:1
8
作者 田昊旻 马祎航 《计算机测量与控制》 2024年第11期87-94,共8页
随着计算机技术的发展,声音识别与健康检测成为现代医学诊断的重要手段之一;通过对新生婴儿声音的分析,可以早期发现和诊断多种健康问题;研究提出一种基于改进反向传播神经网络的声音识别模型,通过声音实现对新生儿的健康状况分析;该模... 随着计算机技术的发展,声音识别与健康检测成为现代医学诊断的重要手段之一;通过对新生婴儿声音的分析,可以早期发现和诊断多种健康问题;研究提出一种基于改进反向传播神经网络的声音识别模型,通过声音实现对新生儿的健康状况分析;该模型通过小波变换对声音数据进行预处理,随后结合粒子群优化算法和反向传播神经网络设计检测模型;通过引入粒子群优化算法对反向传播算法进行改进,提高了模型的局部搜索能力和收敛速度;实验结果表明,在数据集为1000时,小波去噪模型的信噪比为0.97,结构信息损失率为0.18,交并比为0.96;针对不同类型的声音,改进反向传播神经网络模型识别的准确率分别为0.87、0.83、0.97、0.88,均方根误差值为0.09、0.07、0.05、0.07;结果表明,所提出的声音识别与健康检测模型能够有效提高声音数据的识别精度和检测效率,有助于新生儿健康状态的评估。 展开更多
关键词 健康检测 声音识别 粒子群优化算法 小波去噪 反向传播
在线阅读 下载PDF
大容积电烤箱内传热过程的反向传播神经网络控制算法
9
作者 姚青 唐巍峰 +4 位作者 郑鑫 王锐 梁文龙 刘玉贤 褚雯霄 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第7期73-83,共11页
大容积电烤箱内存在严重加热不均匀问题,限制其在商业和家用领域的广泛应用,传统比例-积分-微分(PID)控制算法存在弛豫时间长、温控精度差等问题,导致被加热目标无法维持在最佳烹饪热环境。通过自编程构建了一种反向传播神经网络(BPNN)... 大容积电烤箱内存在严重加热不均匀问题,限制其在商业和家用领域的广泛应用,传统比例-积分-微分(PID)控制算法存在弛豫时间长、温控精度差等问题,导致被加热目标无法维持在最佳烹饪热环境。通过自编程构建了一种反向传播神经网络(BPNN)控制策略,以改善大容积电烤箱的加热速率、温控精度及热均匀性为目标,通过局部速度、温度分布与美拉德反应可视化实验测试,探究了风扇转速、对流与辐射加热功率和排气流量等因素的影响。实验结果表明:在提升算法鲁棒性后,BPNN算法对烤箱内温度预测误差显著降低;相比PID控制方法,采用BPNN算法的被加热目标过热度最多降至6℃,温控精度显著提高;被加热目标表面温度的相对极差从54%降至36%,速度相对极差从71.4%下降至39%,均匀性显著增强;电烤箱的加热弛豫时间从230 s降至100 s。BPNN算法能够实现大容积电烤箱更精确、更快速、更均匀的温度控制。 展开更多
关键词 电烤箱 反向传播神经网络 对流与辐射 热均匀性 弛豫时间
在线阅读 下载PDF
基于反向传播算法的耗材采购信息自动管理系统设计
10
作者 梁道军 《自动化技术与应用》 2024年第5期89-92,97,共5页
为促进对应行业的运作与发展,设计一种基于反向传播算法的耗材采购信息自动管理系统。基于设计反向传播算法,确定训练次数,提升耗材采购信息的分类精准度。系统软件由耗材采购信息处理模块、耗材采购信息分类模块与数据库设计模块组成... 为促进对应行业的运作与发展,设计一种基于反向传播算法的耗材采购信息自动管理系统。基于设计反向传播算法,确定训练次数,提升耗材采购信息的分类精准度。系统软件由耗材采购信息处理模块、耗材采购信息分类模块与数据库设计模块组成。实验结果表明,相较于对比系统,系统信息分类精准度自动化管理水平更高。 展开更多
关键词 反向传播算法 耗材 采购信息管理 数据库
在线阅读 下载PDF
前馈神经网络中的反向传播算法及其改进:进展与展望 被引量:52
11
作者 刘曙光 郑崇勋 刘明远 《计算机科学》 CSCD 北大核心 1996年第1期76-79,共4页
BP网络和算法是使用最广泛的神经网络模型之一,但由于它使用悌度算法,因而存在固有的局部极小及收敛速度慢等问题。本文首先回顾了BP算法的产生和和发展过程,之后对BP算法固有的特点进行了阐述,最后针对原基本BP算法的缺陷对各种改进方... BP网络和算法是使用最广泛的神经网络模型之一,但由于它使用悌度算法,因而存在固有的局部极小及收敛速度慢等问题。本文首先回顾了BP算法的产生和和发展过程,之后对BP算法固有的特点进行了阐述,最后针对原基本BP算法的缺陷对各种改进方法进行了全面综述,并指出了这一研究中的有关问题。 展开更多
关键词 神经网络 反向传播算法 前馈神经网络
在线阅读 下载PDF
基于改进的粒子群算法优化反向传播神经网络的热舒适度预测模型 被引量:17
12
作者 张玲 王玲 吴桐 《计算机应用》 CSCD 北大核心 2014年第3期775-779,共5页
针对热舒适度预测是一个复杂的非线性过程,不便于空调的实时控制应用的问题,提出一种基于改进的粒子群优化(PSO)算法优化反向传播(BP)神经网络的热舒适度预测模型。这一预测模型通过采用PSO算法优化BP神经网络的初始权值和阈值,改善了传... 针对热舒适度预测是一个复杂的非线性过程,不便于空调的实时控制应用的问题,提出一种基于改进的粒子群优化(PSO)算法优化反向传播(BP)神经网络的热舒适度预测模型。这一预测模型通过采用PSO算法优化BP神经网络的初始权值和阈值,改善了传统BP算法收敛速度慢及对网络初始值敏感的问题。同时,针对标准PSO算法易出现早熟收敛、局部寻优能力弱等缺点,提出了相应改进策略,进一步提高了PSO优化BP神经网络的能力。实验结果表明:与传统BP模型和标准PSO-BP模型相比,基于改进的PSO-BP算法的热舒适度预测模型具有更高的预测精度和更快的收敛速度。 展开更多
关键词 热舒适度 预测 反向传播神经网络 粒子群优化算法 模型
在线阅读 下载PDF
适用于海量负荷数据分类的高性能反向传播神经网络算法 被引量:38
13
作者 刘洋 刘洋1 许立雄 《电力系统自动化》 EI CSCD 北大核心 2018年第21期96-103,共8页
负荷分类对于指导电网发用电规划与保证电网可靠运行具有重要意义。面向负荷数据海量化与复杂化趋势,传统负荷分类方法已无法满足用电大数据分析要求。首先,针对用户侧数据体量大、类型多、速度快等特点,在Spark平台上将反向传播神经网... 负荷分类对于指导电网发用电规划与保证电网可靠运行具有重要意义。面向负荷数据海量化与复杂化趋势,传统负荷分类方法已无法满足用电大数据分析要求。首先,针对用户侧数据体量大、类型多、速度快等特点,在Spark平台上将反向传播神经网络(BPNN)算法并行化,实现对海量负荷数据的高效分类。然后,通过对训练样本抽样分块以降低各网络学习时间,针对分布式后BPNN基分类器由于学习样本缺失潜在的准确度下降问题,采用集成学习予以改善。并通过BPNN学习不同训练样本块构建差异化基分类器,对基分类结果多数投票得到最终分类结果。另外,提供了一种基于K-means和K-medoids聚类的负荷数据训练样本选取方法。算例表明所提方法既能对负荷曲线有效分类,又能大幅提高海量数据的处理效率。 展开更多
关键词 负荷分类 Spark平台 反向传播神经网络 集成学习 聚类算法
在线阅读 下载PDF
基于多特征融合和分层反向传播增强算法的人体动作识别 被引量:6
14
作者 李拟珺 程旭 +1 位作者 郭海燕 吴镇扬 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第3期493-498,共6页
为了推广神经网络在人体动作识别中的应用,设计了一种基于分层识别框架和增强算法的动作识别系统,该系统融合了光流直方图、有向梯度直方图、Hu的矩特征、分块剪影和自相似矩阵等多种特征.为了与反向传播网络的增强相匹配,将传统的二分... 为了推广神经网络在人体动作识别中的应用,设计了一种基于分层识别框架和增强算法的动作识别系统,该系统融合了光流直方图、有向梯度直方图、Hu的矩特征、分块剪影和自相似矩阵等多种特征.为了与反向传播网络的增强相匹配,将传统的二分类增强算法扩展到多分类版本.此外,系统采用了包含预判决和后判决的分层识别框架,前者通过分析运动显著区域的位置,把动作粗分为几个子类,后者则利用额外的特征进一步提高识别准确率.基于Weizmann和KTH数据库的实验结果表明:神经网络相对于常用的支持向量机具有明显的优越性;结合分层识别的反向传播增强算法可以极大减少运算代价与动作类间的混淆,识别准确率较高. 展开更多
关键词 特征提取 动作识别 反向传播增强算法 神经网络 分层识别
在线阅读 下载PDF
一种改进的反向传播神经网络算法 被引量:4
15
作者 邱浩 王道波 张焕春 《应用科学学报》 CAS CSCD 2004年第3期384-387,共4页
在标准反向传播神经网络算法的基础上,提出了一种改进的反向传播神经网络算法.通过对每个处理单元增加3个参数来增强作用函数,且3个参数与连接权一样,在学习过程中进行实时更新.此算法提高了学习速度,且减少了进入局部最小点的可能性.通... 在标准反向传播神经网络算法的基础上,提出了一种改进的反向传播神经网络算法.通过对每个处理单元增加3个参数来增强作用函数,且3个参数与连接权一样,在学习过程中进行实时更新.此算法提高了学习速度,且减少了进入局部最小点的可能性.通过XOR问题的仿真证明了改进算法的有效性. 展开更多
关键词 反向传播 神经网络 误差 模式 传播 学习算法
在线阅读 下载PDF
基于反向传播算法神经网络的信用评分系统预测力研究 被引量:4
16
作者 朱晓明 程建 +1 位作者 刘治国 钟经樊 《西安交通大学学报》 EI CAS CSCD 北大核心 2006年第12期1405-1409,共5页
为了提高信用评分系统的预测准确性和稳定性,建立了基于反向传播(BP)算法神经网络的信用评分系统,并提出信用评分系统预测力和预测稳定性验证的新方法.结合信用评分问题的实际特点建立了模型并确定了参数,然后采用一种正向选入法确定输... 为了提高信用评分系统的预测准确性和稳定性,建立了基于反向传播(BP)算法神经网络的信用评分系统,并提出信用评分系统预测力和预测稳定性验证的新方法.结合信用评分问题的实际特点建立了模型并确定了参数,然后采用一种正向选入法确定输入变量,进行模型训练,并通过引入接收器操作特征曲线的分析理论、曲线面积(AUC)值及信息理论等评价方式,对所构造的神经网络信用评分系统预测力进行评价,最后利用自抽样法构造出多个验证样本来评估信用评分系统的稳定性.与传统的逻辑信用评分系统的比较结果表明,BP神经网络信用评分系统具有更高的预测准确性和稳定性,其AUC值平均提高0.036 7,AUC值的标准误差平均降低0.005. 展开更多
关键词 神经网络 反向传播算法 信用评分 曲线面积值
在线阅读 下载PDF
基于元模型的模糊Petri网反向传播学习算法 被引量:9
17
作者 汤新民 钟诗胜 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第14期3163-3165,3183,共4页
模糊Petri网是知识表达与并行推理的重要工具,但拓扑为非严格分层的结构。为在不增加虚节点的情况下实现模糊Petri网的反向传播学习,提出模糊Petri网元模型的概念,统一四种基本产生式规则对应的模糊Petri网模型。并建立元模型的结论置... 模糊Petri网是知识表达与并行推理的重要工具,但拓扑为非严格分层的结构。为在不增加虚节点的情况下实现模糊Petri网的反向传播学习,提出模糊Petri网元模型的概念,统一四种基本产生式规则对应的模糊Petri网模型。并建立元模型的结论置信度关于条件置信度的连续映射,给出了正向推理算法。为提高收敛速率,先通过基于回溯策略的反向推理算法,计算元模型结论置信度对条件置信度的梯度函数,最后采用Levenberg-Marquardt算法实现权值优化。 展开更多
关键词 模糊PETRI网 元模型 反向传播算法 LEVENBERG-MARQUARDT算法
在线阅读 下载PDF
一种新的快速收敛的反向传播算法 被引量:8
18
作者 武妍 王守觉 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第8期1092-1095,共4页
提出了一种新的快速的误差反向传播算法 .这种方法从神经网络的权值调节公式入手 ,通过避免过早饱和、加大权值调节的幅度等手段来加快收敛 .并通过对两个奇偶问题、一个函数逼近问题的仿真 ,验证了所提出的算法的有效性 .结果表明 ,所... 提出了一种新的快速的误差反向传播算法 .这种方法从神经网络的权值调节公式入手 ,通过避免过早饱和、加大权值调节的幅度等手段来加快收敛 .并通过对两个奇偶问题、一个函数逼近问题的仿真 ,验证了所提出的算法的有效性 .结果表明 ,所提出的算法在收敛速度等方面大大优于通常的BP(反向传播 )算法、带动量项的BP算法以及其他的一些改进的算法 . 展开更多
关键词 神经网络 反向传播 学习算法
在线阅读 下载PDF
应用遗传算法-主成分分析-反向传播神经网络的近红外光谱识别树种效果 被引量:6
19
作者 冯国红 朱玉杰 +1 位作者 徐华东 蒋天宁 《东北林业大学学报》 CAS CSCD 北大核心 2020年第6期56-60,共5页
以风车木(Conbretum imberbe)和非洲小叶紫檀(Pterocarpus tinctorius Welw)为研究对象,应用LabSpec光谱仪采集光谱样本进行主成分分析(PCA),并运用遗传算法(GA)对主成分进行寻优,分别以未经GA寻优的主成分和经GA寻优的主成分作为反向传... 以风车木(Conbretum imberbe)和非洲小叶紫檀(Pterocarpus tinctorius Welw)为研究对象,应用LabSpec光谱仪采集光谱样本进行主成分分析(PCA),并运用遗传算法(GA)对主成分进行寻优,分别以未经GA寻优的主成分和经GA寻优的主成分作为反向传播(BP)神经网络输入量,测试了BP神经网络识别两种树种的效果。结果表明:寻优前,获得高识别率的主成分区间较窄,仅有5种情况识别效果理想,此种情况不利于主成分数的恰当选择;寻优后,获得高识别率的主成分区间较宽,从前6到前17有12种情况可供选择,此种情况更利于主成分的合理选择;寻优后的识别率比寻优前高,且稳定性较好。利用近红外光谱,依据GA-PCA-BP神经网络方法识别树种是一种理想的方法。 展开更多
关键词 树种识别 近红外光谱 遗传算法 主成分分析 反向传播神经网络
在线阅读 下载PDF
融合均值榜样的反向互学习水母搜索算法
20
作者 段艳明 肖辉辉 谭黔林 《河南师范大学学报(自然科学版)》 CAS 北大核心 2024年第4期111-119,I0015,I0016,共11页
为解决水母搜索算法(jellyfish search algorithm,JS)的洋流运动缺乏多样性、群内运动缺乏引导性、种群间信息无交流,造成搜索速度慢、稳定性差及易早熟的问题,构建了一种融合均值榜样的反向互学习水母搜索算法(oppositional-mutual lea... 为解决水母搜索算法(jellyfish search algorithm,JS)的洋流运动缺乏多样性、群内运动缺乏引导性、种群间信息无交流,造成搜索速度慢、稳定性差及易早熟的问题,构建了一种融合均值榜样的反向互学习水母搜索算法(oppositional-mutual learning jellyfish search algorithm based on mean-value example,OMLJS).首先在水母跟随洋流运动(全局搜索)部分,利用前两代水母的平均位置代替只考虑上一代水母的平均位置来引导水母个体的位置更新,提高算法的全局搜索能力;其次在水母的群内主动运动(局部搜索)部分,利用最优个体代替随机个体来引导水母进行更有效的搜索,加快算法的收敛速度;然后在水母进入下一次迭代前增加对水母种群进行动态反向互学习步骤,增加种群多样性及增强种群间的信息交流,达到互补另外两个策略,提高算法的整体优化性能.选用12个经典的基准测试优化函数,将OMLJS与5个对比算法从解的平均值、最优值及方差进行对比分析,并用于求解最小生成树问题,OMLJS能够更快地找到最小生成树.实验结果表明,OMLJS的收敛速度、求解精度明显提高. 展开更多
关键词 水母搜索算法 均值榜样学习 反向互学习 时间控制机制 最小生成树问题
在线阅读 下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部