期刊文献+
共找到150篇文章
< 1 2 8 >
每页显示 20 50 100
基于双层注意力和深度自编码器的时间序列异常检测模型 被引量:1
1
作者 尹春勇 赵峰 《计算机工程与科学》 CSCD 北大核心 2024年第5期826-835,共10页
目前时间序列通常具有弱周期性以及高度复杂的相关性特征,传统的时间序列异常检测方法难以检测此类异常。针对这一问题,提出了一种新的无监督时间序列异常检测模型(DA-CBG-AE)。首先,使用新型滑动窗口方法,针对时间序列周期性设置滑动... 目前时间序列通常具有弱周期性以及高度复杂的相关性特征,传统的时间序列异常检测方法难以检测此类异常。针对这一问题,提出了一种新的无监督时间序列异常检测模型(DA-CBG-AE)。首先,使用新型滑动窗口方法,针对时间序列周期性设置滑动窗口大小;其次,采用卷积神经网络提取时间序列高维度空间特征;然后,提出具有堆叠式Dropout双向门循环单元网络作为自编码器的基本结构,从而捕捉时间序列的相关性特征;最后,引入双层注意力机制,进一步提取特征,选择更加关键的时间序列,从而提高异常检测准确率。为了验证该模型的有效性,将DA-CBG-AE与6种基准模型在8个数据集上进行比较。最终的实验结果表明,DA-CBG-AE获得了最优的F1值(0.863),并且其检测性能相比最新的基准模型Tad-GAN高出25.25%。 展开更多
关键词 异常检测 双层注意力机制 编码器 卷积神经网络 双向门循环单元
在线阅读 下载PDF
基于自注意力编码器和深度神经网络的短期净负荷预测 被引量:13
2
作者 王炜 冯斌 +3 位作者 黄刚 刘祝平 籍雯媗 郭创新 《中国电机工程学报》 EI CSCD 北大核心 2023年第23期9072-9083,共12页
随着新能源渗透比例的提高,新型电力系统的源荷平衡与稳定运行依赖于更精确可信的预测。净负荷是实际负荷减去新能源出力的负荷需求,其准确的预测结果能够有效提高电力系统运行经济性与安全性。该文采用直接预测策略,提出基于自注意力... 随着新能源渗透比例的提高,新型电力系统的源荷平衡与稳定运行依赖于更精确可信的预测。净负荷是实际负荷减去新能源出力的负荷需求,其准确的预测结果能够有效提高电力系统运行经济性与安全性。该文采用直接预测策略,提出基于自注意力编码器和深度神经网络的净负荷预测模型,该模型包括提取原始不确定量特征信息的自注意力编码器模块和提取净负荷时序特征的长短期记忆神经网络模块,两个模块提取的特征信息输入残差神经网络后输出最终的预测结果。同时,由于净负荷集成了负荷、风光等多个不确定量,波动性较强,该文结合条件分位数回归有效实现非参数区间预测,来量化预测不确定性,评估净负荷波动范围。算例分析表明,所提模型相比常见的预测模型取得了更高的净负荷预测精度,给出的预测区间质量也优于基线模型,能够有效支持电网实时运行。 展开更多
关键词 自注意力 编码器 深度神经网络 净负荷 区间预测
在线阅读 下载PDF
基于自注意力机制和双向GRU神经网络的深度知识追踪优化模型 被引量:12
3
作者 李浩君 方璇 戴海容 《计算机应用研究》 CSCD 北大核心 2022年第3期732-738,共7页
针对现有深度知识追踪模型存在输入习题间复杂关系捕获能力弱、无法有效处理长序列输入数据等问题,提出了基于自注意力机制和双向GRU神经网络的深度知识追踪优化模型(KTSA-BiGRU)。首先,将学习者的历史学习交互序列数据映射为实值向量序... 针对现有深度知识追踪模型存在输入习题间复杂关系捕获能力弱、无法有效处理长序列输入数据等问题,提出了基于自注意力机制和双向GRU神经网络的深度知识追踪优化模型(KTSA-BiGRU)。首先,将学习者的历史学习交互序列数据映射为实值向量序列;其次,以实值向量序列作为输入训练双向GRU神经网络,利用双向GRU神经网络建模学习者的学习过程;最后,使用自注意力机制捕获练习题之间的关系,根据双向GRU神经网络输出的隐向量和注意力权重计算学习者正确回答下一问题的概率。实验在三个公共数据集上的性能分析优于现有的知识追踪模型,能提高深度知识追踪的预测精度。 展开更多
关键词 知识追踪 深度学习 双向GRU神经网络 自注意力机制
在线阅读 下载PDF
基于自注意力机制的卷积自编码器多次波压制方法 被引量:11
4
作者 张猛 《石油物探》 CSCD 北大核心 2022年第3期454-462,共9页
地震数据的智能化处理可以降低人工成本,减少对未知先验信息的依赖,提升数据处理效率。在地震勘探数据中多次波通常被视作噪声,需要基于一定的数学物理模型对其进行压制或分离。研究利用与多次波全局时空高度相关的自注意力卷积自编码... 地震数据的智能化处理可以降低人工成本,减少对未知先验信息的依赖,提升数据处理效率。在地震勘探数据中多次波通常被视作噪声,需要基于一定的数学物理模型对其进行压制或分离。研究利用与多次波全局时空高度相关的自注意力卷积自编码器神经网络压制多次波,可以避免实际计算中的超参数选取,大幅提高计算效率。其中,自注意力机制可以提升网络性能。将实测地震数据成像道集作为神经网络输入,使用商业软件将多次波压制后的结果作为标签数据,利用10%的工区地震数据训练神经网络以及90%的工区地震数据测试神经网络。神经网络测试的输出结果与标签数据的残差均值为0.0014,两者差距极小,说明使用该神经网络压制多次波的结果是正确的。与传统方法相比,基于自注意力机制的卷积自编码器多次波压制方法只需人工处理小样本量数据,再进行神经网络训练便可处理工区的大体量地震数据,为实际地震数据的多次波压制提供了一种有效且高效率的智能化处理方法。 展开更多
关键词 多次波压制 编码器 自注意力机制 深度神经网络 人工智能
在线阅读 下载PDF
融合CNN-BiGRU和注意力机制的网络入侵检测模型 被引量:6
5
作者 杨晓文 张健 +1 位作者 况立群 庞敏 《信息安全研究》 CSCD 北大核心 2024年第3期202-208,共7页
为提高网络入侵检测模型特征提取能力和分类准确率,提出了一种融合双向门控循环单元(CNN-BiGRU)和注意力机制的网络入侵检测模型.使用CNN有效提取流量数据集中的非线性特征;双向门控循环单元(BiGRU)提取数据集中的时序特征,最后融合注... 为提高网络入侵检测模型特征提取能力和分类准确率,提出了一种融合双向门控循环单元(CNN-BiGRU)和注意力机制的网络入侵检测模型.使用CNN有效提取流量数据集中的非线性特征;双向门控循环单元(BiGRU)提取数据集中的时序特征,最后融合注意力机制对不同类型流量数据通过加权的方式进行重要程度的区分,从而整体提高该模型特征提取与分类的性能.实验结果表明:其整体精确率比双向长短期记忆网络(BiLSTM)模型提升了2.25%.K折交叉验证结果表明:该模型泛化性能良好,避免了过拟合现象的发生,印证了该模型的有效性与合理性. 展开更多
关键词 网络入侵检测 卷积神经网络 双向门控循环单元 注意力机制 深度学习
在线阅读 下载PDF
基于自注意力机制的高分遥感影像语义分割
6
作者 杨军 张金影 康玥 《哈尔滨工程大学学报》 北大核心 2025年第2期344-354,共11页
针对遥感影像多尺度特征提取困难、上下文信息利用不足的问题,本文结合自注意力机制和深度可分离卷积提出一种线性多头自注意力网络模型,适用于高分辨率遥感影像语义分割。在自注意力模块之前引入深度可分离卷积,减少计算量的同时有助... 针对遥感影像多尺度特征提取困难、上下文信息利用不足的问题,本文结合自注意力机制和深度可分离卷积提出一种线性多头自注意力网络模型,适用于高分辨率遥感影像语义分割。在自注意力模块之前引入深度可分离卷积,减少计算量的同时有助于捕获局部特征;在编码器分支中提出线性的多头自注意力模块以降低模型的计算复杂度;设计一个解码器来恢复特征图分辨率,通过级联操作整合各层级的特征并生成高分辨率的语义分割结果。所提算法在ISPRS Vaihingen和Potsdam数据集上的分割结果的mF1分别达到了90.77%和92.36%,与目前主流算法相比,不透水表面、建筑、低矮植物、树木类的分割准确率及总体分割准确率均有提高。本文算法构建的线性多头自注意力网络是一种高效的高分辨率遥感影像语义分割模型。 展开更多
关键词 高分辨率遥感影像 多头自注意力 深度可分离卷积 语义分割 特征提取 卷积神经网络 编码器 码器
在线阅读 下载PDF
基于堆叠稀疏去噪自编码器的混合入侵检测方法 被引量:3
7
作者 田世林 李焕洲 +2 位作者 唐彰国 张健 李其臻 《四川师范大学学报(自然科学版)》 CAS 2024年第4期517-527,共11页
针对高维数据场景下传统入侵检测方法特征提取困难、检测准确率低等问题,提出一种集成多种深度学习模型的混合入侵检测方法.该方法由特征降维算法和混合检测模型2部分组成.首先,利用堆叠稀疏去噪自编码器对原始数据进行特征降维,从而剔... 针对高维数据场景下传统入侵检测方法特征提取困难、检测准确率低等问题,提出一种集成多种深度学习模型的混合入侵检测方法.该方法由特征降维算法和混合检测模型2部分组成.首先,利用堆叠稀疏去噪自编码器对原始数据进行特征降维,从而剔除可能存在的噪声干扰和冗余信息.然后,采用一维卷积神经网络和双向门控循环单元学习数据中的空间维度特征和时序维度特征,将融合后的空时特征通过注意力分配不同的权重系数,从而使有用的信息得到更好表达,再经由全连接层训练后进行分类.为检验方案的可行性,在UNSW-NB15数据集上进行验证.结果表明,该模型与其他同类型入侵检测算法相比,拥有更优秀的检测性能,其准确率达到99.57%,误报率仅为0.68%. 展开更多
关键词 异常检测 注意力机制 堆叠稀疏去噪自编码器 一维卷积神经网络 双向门控循环单元
在线阅读 下载PDF
基于双向GRU和注意力机制的叠前地震孔隙度预测方法 被引量:1
8
作者 杨菲 刘洋 +1 位作者 常锁亮 陈桂 《石油物探》 CSCD 北大核心 2024年第3期598-609,共12页
岩石孔隙度是表征储层的重要参数之一,对孔隙度进行准确预测有利于更精细地刻画高孔高渗储层位置。然而地震弹性参数与孔隙度之间的关系较为复杂,给储层孔隙度的准确预测带来一定困难。深度学习为地震准确预测孔隙度提供了新思路。提出... 岩石孔隙度是表征储层的重要参数之一,对孔隙度进行准确预测有利于更精细地刻画高孔高渗储层位置。然而地震弹性参数与孔隙度之间的关系较为复杂,给储层孔隙度的准确预测带来一定困难。深度学习为地震准确预测孔隙度提供了新思路。提出了一种基于双向门控循环单元神经网络(GRU)和注意力机制(BiGRU-Attention)的叠前地震孔隙度预测方法,该方法利用双向GRU实现信息的双向传播并加入Attention机制放大关键信息,将叠前同时反演得到的纵波速度和密度信息作为输入,以测井孔隙度值作为标签来训练和测试BiGRU-Attention网络,建立起地震弹性参数与孔隙度之间的复杂映射关系,进而实现孔隙度的准确预测。实际数据测试结果表明,相比于常规多元线性回归方法(MLR)、密集神经网络(DNN)和门控循环单元神经网络(GRU)等预测方法,BiGRU-Attention网络预测方法在盲井测试中预测精度更高。将该方法应用于某实际三维工区地震数据预测的孔隙度值与测井孔隙度值匹配良好,说明该方法具有较好的实用价值。 展开更多
关键词 深度学习 注意力机制 双向门控循环单元神经网络 孔隙度预测 储层参数反演
在线阅读 下载PDF
日交通流预测的编码器-解码器深度学习模型研究 被引量:4
9
作者 曹阳 茅一波 施佺 《计算机工程与应用》 CSCD 北大核心 2022年第22期284-290,共7页
精准的日交通流预测是智能交通领域的重要研究内容之一。目前已有的日交通流预测模型大多在短期预测模型的基础上通过多步预测或者多目标预测的方式改进而来。这两种改进方案中,前者对误差的传播更为敏感,而后者则忽视了预测结果的时序... 精准的日交通流预测是智能交通领域的重要研究内容之一。目前已有的日交通流预测模型大多在短期预测模型的基础上通过多步预测或者多目标预测的方式改进而来。这两种改进方案中,前者对误差的传播更为敏感,而后者则忽视了预测结果的时序关系,导致预测模型精度偏低。提出了一种用于日交通流预测的编码器-解码器深度学习模型,首先将长短时记忆网络(long short-term memory,LSTM)作为编码器-解码器模型的基本单元以提高模型捕捉长期依赖关系的能力,其次引入注意力机制调节编码向量的权重以进一步提高模型的预测精度。新的模型是一种典型的序列到序列预测模型,与传统的序列到点的模型相比更加契合日交通流预测的需求。为验证模型的有效性,取美国5号州际公路西雅图段的实际交通流数据进行实验,实验结果表明,提出的预测模型在平均车流密度大于40辆/km的时间段中,其预测结果的平均绝对百分比误差(mean absolute percentage error,MAPE)与LSTM、门控循环单元(gated recurrent unit,GRU)、反向传播(back propagation,BP)神经网络、卷积神经网络(convolutional neural network,CNN)、图卷积网络(graph convolution network,GCN)传统预测模型相比,分别减小了19%、20%、25%、16%、25%。 展开更多
关键词 日交通流预测 编码器-解码器 深度学习 长短时记忆网络(LSTM) 注意力机制
在线阅读 下载PDF
基于双向长短期记忆和多层级联注意力的配电网态势感知模型 被引量:2
10
作者 袁新平 原野 +1 位作者 王海燕 唐铭 《计算机应用》 CSCD 北大核心 2024年第S01期343-346,共4页
配电网态势感知的准确性和及时性对保障电网工作的稳定性具有重要意义。针对传统方法中存在模型提取关键特征不显著、对特征的深层关系挖掘不深入和算法鲁棒性较弱等问题,提出一种基于双向长短期记忆(Bi-LSTM)和多层级联注意力的配电网... 配电网态势感知的准确性和及时性对保障电网工作的稳定性具有重要意义。针对传统方法中存在模型提取关键特征不显著、对特征的深层关系挖掘不深入和算法鲁棒性较弱等问题,提出一种基于双向长短期记忆(Bi-LSTM)和多层级联注意力的配电网态势感知模型。首先,利用Bi-LSTM网络捕捉与学习配电网故障因素的浅层语义特征;其次,提出多层级联注意力模块,通过学习不同周期的数据曲线函数,增强模型对数据分布的拟合能力;最后,通过实验验证所提模型的有效性。在全省16个州(市)的电力数据上的实验结果显示,所提模型的平均绝对百分比误差(mAPE)和均方根误差(RMSE)分别为2.04%与20.4,验证了所提模型的有效性。 展开更多
关键词 态势感知 双向循环神经网络 多层级联注意力 配电网 深度学习
在线阅读 下载PDF
融合通道与多头注意力的股价趋势预测模型
11
作者 周佳妮 刘春雨 刘家鹏 《计算机工程与应用》 北大核心 2025年第8期324-338,共15页
目前的传统模型如支持向量机(SVM)、循环神经网络(RNN)、长短期记忆网络(LSTM)等,在处理非线性、多尺度、高噪声的股票时间序列数据方面存在局限,往往无法有效提升股价趋势预测的准确性。针对这一问题,创新性地提出了一种基于通道注意... 目前的传统模型如支持向量机(SVM)、循环神经网络(RNN)、长短期记忆网络(LSTM)等,在处理非线性、多尺度、高噪声的股票时间序列数据方面存在局限,往往无法有效提升股价趋势预测的准确性。针对这一问题,创新性地提出了一种基于通道注意力和多头注意力的深度学习预测模型(SDAE-CNN-BiLSTM-CM)。该模型融合了降噪自编码器和CNN-BiLSTM模型,能够对高噪声的股票数据有效建模,同时引入了通道注意力机制(CAM)和多头注意力机制(MSA),以更好地捕获时间序列的短期和长期依赖关系,最后通过联合优化层实现分层聚合时序信息,以适应金融时间序列时变性强的特点。实证结果表明,相较于传统模型,所提出的模型在提高股价趋势预测准确性上具有优势,且基于该模型的交易策略在回测表现中也获得了较高的收益与较低的风险。 展开更多
关键词 股价趋势预测 深度学习 注意力机制 双向长短期记忆网络
在线阅读 下载PDF
基于Transformer的多编码器端到端语音识别 被引量:2
12
作者 庞江飞 孙占全 《电子科技》 2024年第4期1-7,共7页
当前广泛使用的Transformer模型具有良好的全局依赖关系捕捉能力,但其在浅层时容易忽略局部特征信息。针对该问题,文中提出了一种使用多个编码器来改善语音特征信息提取能力的方法。通过附加一个额外的卷积编码器分支来强化对局部特征... 当前广泛使用的Transformer模型具有良好的全局依赖关系捕捉能力,但其在浅层时容易忽略局部特征信息。针对该问题,文中提出了一种使用多个编码器来改善语音特征信息提取能力的方法。通过附加一个额外的卷积编码器分支来强化对局部特征信息的捕捉,弥补浅层Transformer对局部特征信息的忽视,有效实现音频特征序列全局和局部依赖关系的融合,即提出了基于Transformer的多编码器模型。在开源中文普通话数据集Aishell-1上的实验表明,在没有外部语言模型的情况下,相比于Transformer模型,基于Transformer的多编码器模型的字符错误率降低了4.00%。在内部非公开的上海话方言数据集上,文中所提模型的性能提升更加明显,其字符错误率从19.92%降低至10.31%,降低了48.24%。 展开更多
关键词 TRANSFORMER 语音识别 端到端 深度神经网络 编码器 多头注意力 特征融合 卷积分支网络
在线阅读 下载PDF
基于双阶段注意力机制循环神经网络的交通流预测
13
作者 王健 王峥 《计算机与数字工程》 2024年第4期1251-1256,共6页
随着深度学习的发展,交通流预测的准确率越发提高,对时间序列的交通流预测进行研究,基于一种双阶段注意力机制循环神经网络模型(DA-RNN),以解决当前在交通流量的时间序列预测中存在的难以捕捉时间数据序列之间的相关性导致预测不够准确... 随着深度学习的发展,交通流预测的准确率越发提高,对时间序列的交通流预测进行研究,基于一种双阶段注意力机制循环神经网络模型(DA-RNN),以解决当前在交通流量的时间序列预测中存在的难以捕捉时间数据序列之间的相关性导致预测不够准确的问题,并解决实验中存在的过拟合现象。论文基于PEMS04数据进行实验并将预测结果与LSTM、GRU模型的预测结果进行对比,表明该时序预测模型具有良好的性能,可为交通管理与控制提供有效依据。 展开更多
关键词 深度学习 循环神经网络 注意力机制 编码器-解码器
在线阅读 下载PDF
基于自动编码器的深度伪造图像检测方法 被引量:8
14
作者 张亚 金鑫 +3 位作者 江倩 李昕洁 董云云 姚绍文 《计算机应用》 CSCD 北大核心 2021年第10期2985-2990,共6页
基于深度学习的图像伪造方法生成的图像肉眼难辨,一旦该技术被滥用于制作虚假图像和视频,可能会对国家政治、经济、文化造成严重的负面影响,也可能会对社会生活和个人隐私构成威胁。针对上述问题,提出了一种基于自动编码器的深度伪造Dee... 基于深度学习的图像伪造方法生成的图像肉眼难辨,一旦该技术被滥用于制作虚假图像和视频,可能会对国家政治、经济、文化造成严重的负面影响,也可能会对社会生活和个人隐私构成威胁。针对上述问题,提出了一种基于自动编码器的深度伪造Deepfake图像检测方法。首先,借助高斯滤波对图像进行预处理,提取高频信息作为模型输入;然后,利用自动编码器对图像进行特征提取,并在编码器中添加注意力机制模块以获取更好的分类效果;最后,通过消融实验证明,采用所提的预处理方法和添加注意力机制模块有助于伪造图像检测。实验结果表明,与ResNet50、Xception以及InceptionV3相比,所提方法在数据集样本量较小且包含的场景丰富时,可以有效检测多种生成方法所伪造的图像,其平均准确率可达97.10%,明显优于对比方法,且其泛化性能也明显优于对比方法。 展开更多
关键词 Deepfake检测 深度伪造图像 自动编码器 生成对抗网络 注意力机制
在线阅读 下载PDF
基于卷积神经网络和双向门控循环单元网络注意力机制的情感分析 被引量:14
15
作者 张腾 刘新亮 高彦平 《科学技术与工程》 北大核心 2021年第1期269-274,共6页
传统的情感分析方法不能获取全局特征,以及否定词、转折词和程度副词的出现影响句子极性判断。在深度学习方法基础上提出了基于卷积神经网络和双向门控循环单元网络注意力机制的短文本情感分析方法。将情感积分引入卷积神经网络,利用情... 传统的情感分析方法不能获取全局特征,以及否定词、转折词和程度副词的出现影响句子极性判断。在深度学习方法基础上提出了基于卷积神经网络和双向门控循环单元网络注意力机制的短文本情感分析方法。将情感积分引入卷积神经网络,利用情感词自身信息,通过双向门控循环网络模型获取全局特征,对影响句子极性的否定词、转折词和程度副词引入注意力机制实现对这类词的重点关注,提取影响句子极性的重要信息。实验结果表明,该模型与现有相关模型相比,有效提高情感分类的准确率。 展开更多
关键词 深度学习 双向门控循环单元(Bi-GRU) 注意力机制 卷积神经网络 情感分析
在线阅读 下载PDF
基于图双向选择注意力的公司任职预测算法
16
作者 潘文韬 熊贇 朱扬勇 《计算机应用与软件》 北大核心 2024年第6期38-44,共7页
基于员工与公司潜在的双向选择关系来预测未来员工的去向以及公司的人才引进情况,这些预测信息对于金融、招聘等从业人员在判断公司未来发展和寻找潜在求职者等工作具有指导意义。为了获得节点间的双向选择信息并强化节点信息以增强预... 基于员工与公司潜在的双向选择关系来预测未来员工的去向以及公司的人才引进情况,这些预测信息对于金融、招聘等从业人员在判断公司未来发展和寻找潜在求职者等工作具有指导意义。为了获得节点间的双向选择信息并强化节点信息以增强预测效果,在公司与员工及其相关数据构建成的异质图下利用自编码器和三层注意力机制来生成用于任职预测的双向选择向量及节点向量。根据在真实数据集上的实验,该方法在任职预测任务下的预测效果要优于现有方法,同时提高了预测的可解释性。 展开更多
关键词 异质图 元路径 编码器 注意力机制 深度神经网络 职业流动行为
在线阅读 下载PDF
基于注意力机制和双向长短时记忆网络的横波速度预测方法及应用 被引量:5
17
作者 何运康 李庆春 刘兴业 《石油物探》 CSCD 北大核心 2023年第2期225-235,共11页
横波速度信息对油气勘探而言至关重要,但实际测井资料中常常缺失横波速度资料。横波速度与测井参数之间存在非线性相关性,二者关系复杂难以用解析解表征。为此,提出了一种基于注意力机制和双向长短时记忆网络的横波速度预测方法(AT-BLS... 横波速度信息对油气勘探而言至关重要,但实际测井资料中常常缺失横波速度资料。横波速度与测井参数之间存在非线性相关性,二者关系复杂难以用解析解表征。为此,提出了一种基于注意力机制和双向长短时记忆网络的横波速度预测方法(AT-BLSTM)。该方法首先利用注意力机制为测井参数分配权重,自动聚焦对横波速度预测贡献大的测井参数,然后利用双向长短时记忆网络以及横波速度曲线纵向上的时序特征,挖掘各种测井参数与横波速度之间的相关关系,获得各种测井参数与横波速度之间的学习模型,再输入优选测井参数,最终可直接获得横波速度的预测结果。将上述方法应用于挪威北海Volve油田和我国西南某工区的实际测井资料进行横波速度预测,并将预测结果与常规双向长短时记忆网络、门控循环神经网络以及基于经验公式的传统方法的预测结果进行对比。结果表明,利用基于注意力机制和双向长短时记忆网络的横波速度预测方法得到的测井参数权重分配合理,横波速度预测结果与实测横波速度误差较小、相关系数较高,有效提高了横波速度预测精度,预测结果具有良好的稳定性。 展开更多
关键词 测井参数 横波速度预测 深度学习 注意力机制 双向长短时记忆网络
在线阅读 下载PDF
基于双向长短时记忆网络和注意力机制的RNA m5C甲基化位点预测 被引量:1
18
作者 胡梦 李慧敏 +2 位作者 唐轶 王煜 陈鹏辉 《中国生物化学与分子生物学报》 CAS CSCD 北大核心 2023年第2期303-310,共8页
RNA 5-甲基胞嘧啶(m5C)修饰在许多生物过程中发挥重要的作用,对m5C位点的准确识别有助于更好地理解其生物学功能,所以识别m5C甲基化位点十分必要。尽管已发展了多种识别m5C甲基化位点的机器学习方法,但预测能力仍有待提高。本文基于双... RNA 5-甲基胞嘧啶(m5C)修饰在许多生物过程中发挥重要的作用,对m5C位点的准确识别有助于更好地理解其生物学功能,所以识别m5C甲基化位点十分必要。尽管已发展了多种识别m5C甲基化位点的机器学习方法,但预测能力仍有待提高。本文基于双向长短时记忆网络和注意力机制,提出了一种预测RNA m5C甲基化位点的深度学习算法。用该方法在人、小鼠、酿酒酵母和拟南芥共4种生物的RNA m5C数据集上进行实验,m5C位点预测AUC值分别达到92.5%、99.7%、93.6%和86.5%。与现有预测方法相比,该方法具有较好的预测性能,并且具有更优的泛化能力,为RNA m5C甲基化位点预测提供了一种新方法。 展开更多
关键词 双向长短时记忆网络 注意力机制 m5C甲基化位点 深度学习
在线阅读 下载PDF
基于变分自编码器的多光谱图像压缩网络 被引量:1
19
作者 施凯杰 石翠萍 +2 位作者 曾泽鑫 蒋吉娟 邹立颖 《齐齐哈尔大学学报(自然科学版)》 2023年第5期31-38,共8页
多数图像压缩方法很难充分捕获多光谱图像的结构信息,故提出一种基于变分自编码器的空谱联合注意力网络(SSJANet)。首先,设计了一个长距离信息捕获注意力块。其次,提出了一种多尺度光谱注意力块。将两种模块嵌入到同一个残差模块中,构... 多数图像压缩方法很难充分捕获多光谱图像的结构信息,故提出一种基于变分自编码器的空谱联合注意力网络(SSJANet)。首先,设计了一个长距离信息捕获注意力块。其次,提出了一种多尺度光谱注意力块。将两种模块嵌入到同一个残差模块中,构成空谱联合注意力模块(SSJ-AM)。最后,将SSJ-AM和超先验熵编码模型嵌入到变分自编码器中。实验结果表明,与先进的压缩模型相比,SSJANet方法在多个压缩评估指标上,都取得了更好的压缩性能。 展开更多
关键词 压缩 深度学习 多光谱图像 变分自编码器 注意力网络
在线阅读 下载PDF
双向长短期记忆网络的时间序列预测方法 被引量:4
20
作者 管业鹏 苏光耀 盛怡 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2024年第3期103-112,共10页
时间序列预测即利用历史时间序列数据,预测未来一段时间内的数据信息,以便提前制定相应策略。目前,时间序列的类别复杂繁多,而现有的时间序列预测模型面对多种类型数据时无法取得稳定预测的结果,进而难以同时满足对现实中多种复杂的时... 时间序列预测即利用历史时间序列数据,预测未来一段时间内的数据信息,以便提前制定相应策略。目前,时间序列的类别复杂繁多,而现有的时间序列预测模型面对多种类型数据时无法取得稳定预测的结果,进而难以同时满足对现实中多种复杂的时序数据预测的应用需求。针对上述问题,提出了一种基于时间注意力机制双向长短期记忆网络的时间序列预测方法。笔者提出的网络模型采用改进的正向和反向传播机制提取时序信息并通过自适应权重分配策略推理未来的时序信息。具体来说,设计了一个改进的双向长短期记忆网络,通过结合双向长短期记忆和长短期记忆网络提取深度时间序列特征,挖掘上下文的时序依赖关系。在此基础上,融合所提出的时间注意力机制,实现对深度时间序列特征进行自适应加权,提升深度时序特征的显著性表达能力。通过与同类代表性方法在多个不同类别数据集上的客观定量对比,实验结果表明,该方法能够在多种类别的复杂时间序列数据上更优的预测性能。 展开更多
关键词 时间序列 双向长短期记忆网络 长短期记忆网络 注意力机制 深度学习
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部