针对图像序列中多目标检测和跟踪算法结构复杂、计算量大、性能降低等问题,提出一种基于代价参考粒子滤波器组的多目标检测前跟踪(Cost-reference particle filter bank based multi-target track-before-detect, CRPFB-MTBD)算法,将多...针对图像序列中多目标检测和跟踪算法结构复杂、计算量大、性能降低等问题,提出一种基于代价参考粒子滤波器组的多目标检测前跟踪(Cost-reference particle filter bank based multi-target track-before-detect, CRPFB-MTBD)算法,将多目标跟踪问题转换为序贯地检测和跟踪多个单目标的问题.首先,采用代价参考粒子滤波器组序贯地估计所有可能单目标状态序列;其次,基于所有可能单目标状态序列的欧氏距离和累积代价确定目标数量;最后,根据累积代价判断每个目标出现和消失的具体时刻.仿真实验验证了CRPFB-MTBD的优良性能,与基于传统粒子滤波的多目标检测前跟踪算法(Particle filter based multi-target track-before-detect, PF-MTBD)、基于概率假设密度的检测前跟踪算法(Probability hypothesis density based track-before-detect, PHD-TBD)和基于伯努利滤波的检测前跟踪算法(Bernoulli based track-before-detect, Bernoulli-TBD)相比, CRPFB-MTBD的目标状态序列和数量估计结果最佳,且平均单次运行时间极短.展开更多
针对雷达在低信噪比(signal to noise ratio,SNR)条件下对运动目标的检测和跟踪难题,提出了一种基于粒子滤波(particle filter,PF)的双极化雷达运动目标检测前跟踪(track before detect,TBD)算法,又称联合粒子滤波检测前跟踪(joint part...针对雷达在低信噪比(signal to noise ratio,SNR)条件下对运动目标的检测和跟踪难题,提出了一种基于粒子滤波(particle filter,PF)的双极化雷达运动目标检测前跟踪(track before detect,TBD)算法,又称联合粒子滤波检测前跟踪(joint particle filter-track before detect,JPF-TBD)方法.该算法借鉴传统的TBD算法处理框架,以经典PF算法为基础,使用双通道幅度相位似然比函数计算粒子权值,并实现了完整的PF过程.与同类研究相比,所提算法能够充分利用双极化雷达各通道幅度和相位信息,进一步扩展了PF算法的应用范围.仿真实验表明:在SNR>10 dB,虚警概率为10-6的情况下所提算法对目标的检测概率大于0.8.展开更多
传统的基于帧间非相参积累的检测前跟踪方法对单帧信噪比要求较高,信号有效积累时间较短。提出了一种基于相参积累的粒子滤波检测前跟踪算法,在跟踪算法部分分别对目标时延、速度和强度信息进行采样,得到目标的状态估计;在检测算法部分...传统的基于帧间非相参积累的检测前跟踪方法对单帧信噪比要求较高,信号有效积累时间较短。提出了一种基于相参积累的粒子滤波检测前跟踪算法,在跟踪算法部分分别对目标时延、速度和强度信息进行采样,得到目标的状态估计;在检测算法部分根据目标时延估计重新设计匹配滤波器,并对回波信号再次进行匹配滤波,将回波信号的时延补偿掉,之后进行积累检测。仿真结果表明:在-5 d B这个极低信噪比条件下,该算法具有较高的跟踪精度,延长了信号有效积累时间,提高了信号检测性能。展开更多
文摘针对图像序列中多目标检测和跟踪算法结构复杂、计算量大、性能降低等问题,提出一种基于代价参考粒子滤波器组的多目标检测前跟踪(Cost-reference particle filter bank based multi-target track-before-detect, CRPFB-MTBD)算法,将多目标跟踪问题转换为序贯地检测和跟踪多个单目标的问题.首先,采用代价参考粒子滤波器组序贯地估计所有可能单目标状态序列;其次,基于所有可能单目标状态序列的欧氏距离和累积代价确定目标数量;最后,根据累积代价判断每个目标出现和消失的具体时刻.仿真实验验证了CRPFB-MTBD的优良性能,与基于传统粒子滤波的多目标检测前跟踪算法(Particle filter based multi-target track-before-detect, PF-MTBD)、基于概率假设密度的检测前跟踪算法(Probability hypothesis density based track-before-detect, PHD-TBD)和基于伯努利滤波的检测前跟踪算法(Bernoulli based track-before-detect, Bernoulli-TBD)相比, CRPFB-MTBD的目标状态序列和数量估计结果最佳,且平均单次运行时间极短.
文摘针对雷达在低信噪比(signal to noise ratio,SNR)条件下对运动目标的检测和跟踪难题,提出了一种基于粒子滤波(particle filter,PF)的双极化雷达运动目标检测前跟踪(track before detect,TBD)算法,又称联合粒子滤波检测前跟踪(joint particle filter-track before detect,JPF-TBD)方法.该算法借鉴传统的TBD算法处理框架,以经典PF算法为基础,使用双通道幅度相位似然比函数计算粒子权值,并实现了完整的PF过程.与同类研究相比,所提算法能够充分利用双极化雷达各通道幅度和相位信息,进一步扩展了PF算法的应用范围.仿真实验表明:在SNR>10 dB,虚警概率为10-6的情况下所提算法对目标的检测概率大于0.8.
文摘传统的基于帧间非相参积累的检测前跟踪方法对单帧信噪比要求较高,信号有效积累时间较短。提出了一种基于相参积累的粒子滤波检测前跟踪算法,在跟踪算法部分分别对目标时延、速度和强度信息进行采样,得到目标的状态估计;在检测算法部分根据目标时延估计重新设计匹配滤波器,并对回波信号再次进行匹配滤波,将回波信号的时延补偿掉,之后进行积累检测。仿真结果表明:在-5 d B这个极低信噪比条件下,该算法具有较高的跟踪精度,延长了信号有效积累时间,提高了信号检测性能。