期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于堆叠稀疏自编码的滚动轴承故障诊断 被引量:12
1
作者 侯荣涛 周子贤 +2 位作者 赵晓平 谢阳阳 王丽华 《轴承》 北大核心 2018年第3期49-54,60,共7页
针对机械设备故障数据大容量、多样性的特点,提出一种基于堆叠稀疏自编码(SSAE)的滚动轴承故障智能诊断方法。使用自动编码器(AE)逐层训练网络,从海量数据中自适应地学习各类故障的特征表达,再通过有监督的反向传播算法优化整个网络,最... 针对机械设备故障数据大容量、多样性的特点,提出一种基于堆叠稀疏自编码(SSAE)的滚动轴承故障智能诊断方法。使用自动编码器(AE)逐层训练网络,从海量数据中自适应地学习各类故障的特征表达,再通过有监督的反向传播算法优化整个网络,最终将特征输入softmax分类器实现滚动轴承健康状况精确诊断。在动力传动故障诊断试验台采集了5类轴承故障数据进行测试。试验结果表明:SSAE算法能够有效地提取故障特征,且故障诊断效果优于传统智能诊断方法。 展开更多
关键词 滚动轴承 深度学习 稀疏自编码算法 故障诊断
在线阅读 下载PDF
人工智能技术在风电机组预知维护中的研究与应用
2
作者 吴吉军 冯江哲 王灿 《风力发电》 2022年第5期27-29,26,共4页
随着我国经济的快速发展、工业现代化进程加速,能源需求正在持续增长,为了响应国家“碳达峰”“碳中和”目标,风能作为清洁、无污染、可再生并且开发技术成熟的清洁能源,需求更是与日俱增。风机装机量在增加的同时,也伴随着故障检修不... 随着我国经济的快速发展、工业现代化进程加速,能源需求正在持续增长,为了响应国家“碳达峰”“碳中和”目标,风能作为清洁、无污染、可再生并且开发技术成熟的清洁能源,需求更是与日俱增。风机装机量在增加的同时,也伴随着故障检修不及时、不全面以及检修人员匮乏等问题。因此本文提出了基于大数据及人工智能技术故障预警方法,使用深度学习堆叠自编码(SAE)算法对风电机组齿轮箱散热及齿轮箱轴承类故障进行预警,模型准确率达73.6%;利用长短型记忆网络(LSTM)模型完成了发电机轴承故障诊断预警;利用机组降容的数据特点与图像识别进行深度融合对风电机组降容诊断及根因分析,模型准确率达到85%。 展开更多
关键词 大数据与人工智能 堆叠自编码算法 LSTM模型 图像识别
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部